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Abstract

We propose Adaptive Randomized Smoothing (ARS) to certify the predictions
of our test-time adaptive models against adversarial examples. ARS extends
the analysis of randomized smoothing using f -Differential Privacy to certify
the adaptive composition of multiple steps. For the first time, our theory cov-
ers the sound adaptive composition of general and high-dimensional functions
of noisy inputs. We instantiate ARS on deep image classification to certify
predictions against adversarial examples of bounded L∞ norm. In the L∞
threat model, ARS enables flexible adaptation through high-dimensional input-
dependent masking. We design adaptivity benchmarks, based on CIFAR-10
and CelebA, and show that ARS improves standard test accuracy by 1 to 15%
points. On ImageNet, ARS improves certified test accuracy by up to 1.6%
points over standard RS without adaptivity. Our code is available at https:
//github.com/ubc-systopia/adaptive-randomized-smoothing.

1 Introduction

Despite impressive accuracy, deep learning models still show a worrying susceptibility to adversarial
attacks. Such attacks have been shown for a large number of tasks and models (Costa et al., 2023;
Chakraborty et al., 2018), including areas where security and safety are critical such as fraud detection
(Pumsirirat and Liu, 2018) or autonomous driving (Cao et al., 2021).

Several rigorous defences have been proposed to certify robustness. Randomized Smoothing (RS)
(Lécuyer et al., 2019; Cohen et al., 2019) does so by averaging predictions over noisy versions of
the input at test time, and as such can scale to large deep learning models. However, RS has its
limitations: it is inflexible and either degrades accuracy or only certifies against small attacks.

To address these shortcomings and improve robustness, there has been a recent push to develop
defences that adapt to inputs at test time Croce et al. (2022), including for RS (Alfarra et al., 2022a;
Súkeník et al., 2021; Hong et al., 2022). Most such adaptive defences are heuristic, unproven, and
subject to improved attacks (Croce et al., 2022; Alfarra et al., 2022a; Hong et al., 2022), running the
risk of reverting to a hopeless cat and mouse game with attackers (Athalye et al., 2018; Tramer et al.,
2020), or only provide limited adaptivity (Súkeník et al., 2021; Hong et al., 2022) and gain (§5).

We (re)connect RS to Differential Privacy (DP), after its abandonment for a tighter analysis via
hypothesis testing (Cohen et al., 2019), and introduce Adaptive Randomized Smoothing (ARS) to
provide test-time adaptivity while preserving rigorous bounds. Specifically, we analyze RS through
the lens of f -Differential Privacy (f -DP), and use this connection to leverage a key strength of DP:
the end-to-end analysis of multi-step adaptive computation using composition results (§2).

We use ARS to design two-step defence against L∞ adversaries on image classification (Figure 1),
which is a challenging setting for RS Blum et al. (2020). The first step computes an input mask that
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Figure 1: Two-step ARS for L∞-bounded attacks. Step M1 adds noise to input X and post-processes the
result into a mask w(m1). Step M2 takes masked input w(m1)⊙X and adds noise to get m2. Base classifier
g post-processes a weighted average of m1,m2 to output a label. RS reduces to σ2 = σ and w(.) = 1 (no M1).

focuses on task-relevant information. This reduces the dimension of the input, which is then passed
to the second step for prediction. Thanks to this adaptive dimension reduction, the second step makes
its prediction on a less noisy image, improving the performance and certification radius (§3).

We evaluate our adaptive randomized smoothing method in three settings (§4). For image classifi-
cation, we first design a challenging benchmark based on CIFAR-10, and we show that ARS can
improve accuracy by up to 15%. For spatially-localized face attribute classification on the CelebA
dataset, we show that ARS improves accuracy by up to 7.7%. For large-scale image classification on
ImageNet, ARS maintains accuracy and improves certified accuracy by up to 1.6%.

2 Theory for Adaptivity via Differential Privacy

After introducing the necessary background and known results on RS and DP (§2.1), we reconnect
RS to its DP roots by showing that the tight analysis of Cohen et al. (2019) can be seen as PixelDP
(Lécuyer et al., 2019) using f -Differential Privacy (Dong et al., 2019; 2022), a hypothesis testing
formulation of DP (§2.2). This connection lets us leverage composition results for f -DP to analyze
multi-step approaches for provable robustness to adversarial examples, which we name Adaptive
Randomized Smoothing (ARS) (§2.3). We leverage ARS to design and analyze a two-step defence
against L∞-bounded adversaries (§2.4), which we then instantiate as a deep network (§3).

2.1 Related Work: Adversarial Robustness, Randomized Smoothing, and Differential Privacy

Adversarial Examples (Szegedy et al., 2014): Consider a classifier g : X → Y , and input X . An
adversarial example of radius r in the Lp threat model, for model g on input X , is an input X + e

such that g(X + e) ̸= g(X), where e ∈ Bp(r), where Bp(r) ≜ {x ∈ Rd : ∥x∥p ≤ r} is the Lp ball
of radius r. These inputs or attacks are made against classifiers at test time. For more on the active
topics of attack and defence, we refer to surveys (Li et al., 2023; Costa et al., 2023; Chakraborty
et al., 2018) on current attacks and provable defences. In general, provable defences do not focus on
the largest-scale highest-accuracy classifiers, with the notable exception of randomized smoothing.

Randomized Smoothing (RS) (Lécuyer et al., 2019; Cohen et al., 2019) is a scalable approach
to certifying model predictions against L2-norm adversaries. Specifically, it certifies robustness
to any attack ∈ B2(rX). The algorithm randomizes a base model g by adding spherical Gaussian
noise to its input, and produces a smoothed classifier that returns the class with highest expectation
over the noise: y+ ≜ argmaxy∈Y Pz∼N (0,σ2Id)

(
g(X + z) = y

)
. The tightest analysis from

Cohen et al. (2019) uses hypothesis testing theory to show that, with p+, p− ∈ [0, 1] such that
P(g(X + z) = y+) ≥ p+ ≥ p− ≥ maxy− ̸=y+ P(g(X + z) = y−), the certificate size rX for
prediction y+ is:

rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
, (1)

where Φ−1 is the inverse standard Gaussian CDF, p+ lower-bounds the probability of g(X + z) = y+
(the most probable class), and p− upper-bounds the probability of other classes.
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While sound, RS is static during testing even though attacks may adapt. Recent work aims to
make RS adapt at test time (Súkeník et al., 2021; Alfarra et al., 2022a; Hong et al., 2022). While
pioneering, these works are restricted in either their soundness or their degree of adaptation and
resulting improvement. Súkeník et al. (2021) soundly adapt the variance for RS by the distance
between test and train inputs. However, this only provides minimal adaptivity, with only minor
improvement to certification. Alfarra et al. (2022a) adapt the variance for RS to each test input,
but the analysis is not end-to-end, and hence not sound (Súkeník et al., 2021) (except for their
memory-based edition, but this requires storage of all examples). UniCR (Hong et al., 2022) adapts
the noise distribution for RS, primarily to the data distribution during training, and optionally to input
during testing. The train-time adaptation is sound, but the test-time adaptation is not due to the same
issue raised by Súkeník et al. (2021). We propose ARS to advance certified test-time adaptivity: our
approach is sound and high-dimensional to flexibly adapt the computation of later steps conditioned
on earlier steps by differential privacy theory.

Differential Privacy (DP) is a rigorous notion of privacy. A randomized mechanismM is (ϵ, δ)-DP
if, for any neighbouring inputs X and X ′, and any subset of possible outputs Y ⊂ Range(M),
P(M(X) ∈ Y) ≤ eϵP(M(X ′) ∈ Y) + δ. Following Lécuyer et al. (2019), we define neighbouring
based on Lp norms: X and X ′ in Rd are Lp neighbours at radius r if X −X ′ ∈ Bp(r).

RS was initially analyzed using (ϵ, δ)-Differential Privacy (Lécuyer et al., 2019). Intuitively, the
randomized classifierM(X) ≜ g(X + z), z ∼ N (0, σ2Id) acts as a privacy preserving mechanism
(the Gaussian mechanism) that provably “hides” small variations in X . This privacy guarantee yields
a robustness certificate for the expected predictions.

f -DP (Dong et al., 2019) is a notion of privacy that extends (ϵ, δ)-DP, and defines privacy as a bound
on the power of hypothesis tests. Appendix A provides more details on f -DP. The main result we
leverage is Theorem 2.7 of Dong et al. (2022) that for a Gaussian mechanismM(X) = θ(X) + z,
z ∼ N (0, r2

µ2 ), such that for any neighbouring X,X ′, θ(X)− θ(X ′) ∈ B2(r) (i.e., the L2 sensitivity
of θ is r), we have thatM is Gµ-DP with the function Gµ defined as:

Gµ(α) = Φ
(
Φ−1(1− α)− µ

)
, for α ∈ [0, 1]. (2)

We leverage two key properties of f -DP. First, f -DP is resilient to post-processing. That is, if
mechanismM is f -DP, proc ◦M is also f -DP. Second, f -DP is closed under adaptive composition.
We refer to §3 in Dong et al. (2022) for the precise definition and use their Corollary 3.3: the adaptive
composition of two Gaussian mechanisms Gµ1

-DP and Gµ2
-DP is itself Gµ-DP with

µ =
√
µ2
1 + µ2

2. (3)

f -DP is distinct from the f -divergence from information theory. Dvijotham et al. (2020) use f -
divergence bounds between the noise distribution centred on the original input and centred on any
perturbed input. This improves RS by broadening the noise distributions and norm-bounds on the
adversary that RS can support. In contrast we focus on f -DP, which captures enough information to
reconstruct any divergence by post-processing (Proposition B.1. in Dong et al. (2019)). Our main
objective is different: we leverage f -DP composition properties to enable multi-step deep learning
architectures that adapt to the input at test time with robustness guarantees.

2.2 Randomized Smoothing from f -DP

We reconnect RS with DP, using f -DP to yield results as strong as that of Equation (1). We start with
a general robustness result on f -DP classifiers, which we later build on for our main result.
Proposition 2.1 (f -DP Robustness). LetM : X → Y be f -DP for Bp(r) neighbourhoods, and let
MS : X → argmaxy∈Y P(M(X) = y) be the associated smoothed classifier. Let y+ ≜ MS(X)
be the prediction on input X , and let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥ p+ ≥ p− ≥
maxy− ̸=y+

P(M(X) = y−). Then:

f(1− p+) ≥ 1− f(p−)⇒ ∀e ∈ Bp(r), MS(X + e) = y+

Proof. See Appendix B1.
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Let us now instantiate Proposition 2.1 for Gaussian RS (see §2.1):

Corollary 2.2 (RS from f -DP). Let M : X → g(X + z), z ∼ N (0, σ2Id), and MS : X →
argmaxy∈Y P(M(X) = y) be the associated smooth model. Let y+ ≜ MS(X) be the pre-
diction on input X , and let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥ p+ ≥ p− ≥
maxy− ̸=y+ P(M(X) = y−). Then ∀e ∈ B2(rx), MS(X + e) = y+, with:

rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
.

Proof. See Appendix B2. Sketch: M is a Gaussian mechanism, and is G r
σ

-DP for any r (B2(r)
neighbourhood). We apply Proposition 2.1 and maximize r such that G r

σ
(1−p+) ≥ 1−G r

σ
(p−).

2.3 Adaptive Randomized Smoothing

While Proposition 2.1 is new, so far we have only used it to reprove the known result of Corollary 2.2.
So why is this connection between f -DP and robustness useful? Our key insight is that we can
leverage adaptive composition results at the core of DP algorithms to certify multi-step methods that
adapt to their inputs at test time. Such adaptive defences have seen recent empirical interest, but
either lack formal guarantees, or provide only limited adaptivity in practice (§5). For the first time we
derive a sound and high-dimensional adaptive method for certification.

We formalize adaptive multi-step certification as follows. Consider k randomized Gaussian mecha-
nismsM1, . . . ,Mk (our adaptive steps), such that mi ∼Mi(X|m<i), and for all r ≥ 0 we have
that Mi is Gr/σi

-DP for the B2(r) neighbouring definition. Note that the computation Mi can
depend on previous results, as long as it is Gr/σi

-DP. Further consider a (potentially randomized)
post-processing classifier g(m1, . . . ,mk) = y ∈ Y .

Theorem 2.3 (Main result: Adaptive RS). Using definitions above, letM : X → g(m1, . . . ,mk) ∈
Y, (m1, . . . ,mk) ∼ (M1(X), . . . ,Mk(X|m<k)), and the associated smoothed model be MS :

X → argmaxm∈Y P(M(X) = y). Let y+ ≜ MS(X) be the prediction on input X , and let
p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥ p+ ≥ p− ≥ maxy− ̸=y+ P(M(X) = y−). Then
∀e ∈ B2(rx), MS(X + e) = y+, with:

rX =
1

2
√∑k

i=1
1
σ2
i

(
Φ−1(p+)− Φ−1(p−)

)
.

Proof. By adaptive composition of Gaussian DP mechanisms (Equation (3)), M is Gµ-DP with

µ =
√∑k

i=1
r2

σ2
i
= r

√∑k
i=1

1
σ2
i

. We can then apply Corollary 2.2 with σ = 1/
√∑k

i=1
1
σ2
i

.

We focus on Gaussian RS, but a similar argument applies to general f -DP mechanisms for which we
can compute fi at any r, and the composition fi ⊗ · · · ⊗ fk, potentially using numerical techniques
such as that of Gopi et al. (2021). For Gaussian noise, Theorem 2.3 leverages strong results from DP
to provide a perhaps surprising result: there is no cost to adaptivity, in the sense that k independent
measurements of input X with Gaussian noise (without adaptivity) of respective variance σ2

i can be
averaged to one measurement of variance σ2 = 1/

∑k
i=1 σ

−2
i . To show this, we can use a weighted

average to minimize variance (see e.g., Equation 4 in Honaker (2015)), with cj = σ−2
j /

∑k
i=1 σ

−2
i

yielding σ2 =
∑k

j=1 c
2
jσ

2
j =

∑k
j=1 σ

−2
j /

(∑k
i=1 σ

−2
i

)2
= 1/

∑k
i=1 σ

−2
i . The ARS rX from

Theorem 2.3 is identical to that of one step RS from Corollary 2.2 using this variance: adaptivity
over multi-step computation comes with no decrease in certified radius.

2.4 ARS against L∞-Bounded Adversaries

How can we leverage the multi-step adaptivity from Theorem 2.3 to increase certified accuracy? We
focus on two-step certified defence against L∞-bounded attacks to increase accuracy by adaptivity.
Previous work already notes that RS applies to L∞-bounded attackers (Lécuyer et al., 2019; Cohen
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et al., 2019), using the fact that ∀X ∈ Rd, ∥X∥2 ≤
√
d∥X∥∞, and hence that X−X ′ ∈ B∞(r∞)⇒

X −X ′ ∈ B2(
√
d · r∞). Using Corollary 2.2, this yields:

r∞X =
σ

2
√
d

(
Φ−1(p+)− Φ−1(p−)

)
. (4)

While L∞-specific RS theory exists (Yang et al., 2020), further work by Blum et al. (2020) has
found that Gaussian RS performs advantageously in practice. However, Blum et al. (2020); Kumar
et al. (2020); Wu et al. (2021) show that the

√
d dependency cannot be avoided for a large family of

distributions, leading the authors to speculate that RS might be inherently limited for L∞ certification
of predictions on high dimensional images. To side-step this issue, we use two-steps adaptivity to
first select subsets of the image important to the classification task (thereby reducing dimension), and
then make the prediction based on the selected subset. Formally:

Proposition 2.4 (Adaptive RS for L∞). Define the following pair of (adaptive) mechanisms:

M1 : X → X + z1 ≜ m1, z1 ∼ N (0, σ2
1Id) (5)

Then, with any function w : Rd → [0, 1]d (interpreted as a mask):

M2 : (X,m1)→ w(m1)⊙X + z2 ≜ m2, z2 ∼ N (0,
∥w(m1)∥22

d
σ2
2Id) (6)

where ⊙ is the element-wise product; and the final prediction function g : m1,m2 → Y .

Consider the mechanismM that samples m1 ∼M1, then m2 ∼M2, and finally outputs g(m1,m2);
and the associated smoothed classifier MS : X → argmaxy∈Y P(M(X) = y). Let y+ ≜ MS(X)
be the prediction on input X , and let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥ p+ ≥ p− ≥
maxy− ̸=y+

P(M(X) = y−). Then ∀e ∈ B∞(r∞X ), MS(X + e) = y+, with:

r∞X =
1

2
√
d
(

1
σ2
1
+ 1

σ2
2

)(Φ−1(p+)− Φ−1(p−)
)
. (7)

Proof. Consider any X,X ′ s.t. X−X ′ ∈ B∞(r∞). We analyzeM1 andM2 in turn. ∥X−X ′∥2 ≤√
d∥X −X ′∥∞, so X −X ′ ∈ B2(

√
dr∞), andM1 is Gµ1 -DP with µ1 = r∞

√
d

σ1
.

∥w(m1)⊙X − w(m1)⊙X ′∥2 = ∥w(y1)⊙
(
X −X ′)∥2 ≤ ∥w(y1)∥2∥X −X ′∥∞ so X −X ′ ∈

B2(∥w(y1)∥2r∞) andM2 is Gµ2 -DP with µ2 = ∥w(y1)∥2r
∞

∥w(y1)∥2σ2/
√
d
= r∞

√
d

σ2
.

Applying Theorem 2.3 with
√

(r∞)2d
σ2
1

+ (r∞)2d
σ2
2

= r∞
√
d
(

1
σ2
1
+ 1

σ2
2

)
concludes the proof.

Important remarks. 1. w(.) is a masking function, adaptively reducing (if wi(m1)≪ 1) the value
of Xi and thereby the attack surface of an L∞ attacker. This reduces the effective dimension of
the input toM2. 2. Reducing the dimension enables a reduction in the noise variance inM2, at
fixed privacy guarantee Gµ2

. The variance reduction is enabled for all dimensions in the input, even
those that are not masked (wi(m1) ≈ 1). As a result, the variance of the noise inM2 scales as
∥w(m1)∥22 ≤ d. The more masking, the lower the variance. It may help to consider the change of
variables σ ← σ/

√
d in Equation (4), and σ1,2 ← σ1,2/

√
d in Proposition 2.4, to remove d from

r∞X and scale the noise variance with d. For RS (Equation (4)), the noise variance scales as d. For
ARS, only Equation (5) (the first step) suffers from variance scaled by d, while the second step’s
variance (Equation (6)) scales as ||w(m1)||22, which can be much smaller than d when a large part of
the image is masked. Reduced variance translates into higher accuracy, as well as p+ and p− being
further apart, for a larger r∞X . 3. The variance reduction due to masking applies in the translation
from the B∞(r∞) bound on the attack to the B2(r) sensitivity used in ARS. This variance reduction
would not apply to an L2-bounded adversary (an attack that only changes pixels with mask values
of one yields no sensitivity improvement). Hence, our two-steps ARS architecture for L∞-bounded
adversaries does not reduce to bounding L∞ with L2 as the traditional RS application does, and our
gains come explicitly from variance reduction enabled by adaptive masking against an L∞ attack.
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3 Two-Step ARS for L∞ Certification of Image Classification

Figure 1 shows our deep learning architecture based on Proposition 2.4. The first step,M1, adds
noise to input X and post-processes the result into a mask w(m1). The second step, M2, takes
masked input w(m1)⊙X and adds noise. Finally, the base classifier g post-processes a weighted
average of m1,m2 to output a label. The whole model is trained end-to-end on the classification task.
In RS, only the path going throughM2 is present. This is equivalent to setting σ2 = σ and w(.) = 1,
with noM1. In both cases, the final predictions are averaged over the noise to create the smoothed
classifier. The ARS architecture introduces several new components, which we next describe.

Budget Splitting: the noise budget σ (Figure 1; red) is split to assign noise levels to the two stepsM1

andM2. We parameterize ARS with the same σ as standard RS then split it by the f -DP composition
formula from Equation (3). In practice, we assign σ1 ≥ σ toM1, and then σ2 = 1/

√
1
σ2 − 1

σ2
1

. We
set σ1 by either fixing it to a constant or learning it end-to-end.

Masking: the mask model w(·) takes the noisy image fromM1 and predicts a weighting (one value
in [0, 1] per input pixel) that is multiplied with the input element-wise (denoted ⊙ in Proposition 2.4).
The model is a U-Net architecture, which makes pixel-wise predictions, and acts as a post-processing
ofM1 in the f -DP analysis. Our masking enables test-time adaptivity to reduce the noise variance
forM2, via the mask’s dependence on the input through m1.

Mechanism output averaging: to fully leverage both steps’ information, we take a weighted average
of the outputs m1 and m2 before passing the result to the base classifier g. For a particular input
pixel i, denote Xi the value of pixel, wi ∈ [0, 1] its mask weight (we omit the explicit dependency on
m1 in w for compactness), and m1,i,m2,i the respective values output byM1 andM2. Then, the
final value of pixel i in the averaged input will be X̂i ≜ c1,im1,i + c2,im2,i.

We set c1,i, c2,i such that X̂i is the unbiased estimate of Xi with smallest variance. First, we set
c1,i + wic2,i = 1, such that E[X̂i] = c1,iXi + c2,iwiXi = Xi. Second, we minimize the variance.
Notice that V[X̂i] = c21,iσ

2
1 + c22,i∥w∥22σ2

2 = (1−wic2,i)
2σ2

1 + c22,i∥w∥22σ2
2 : this is a convex function

in c2,i minimized when its gradient in c2,i is zero. Plugging back into the constraint to get c1,i, we

obtain the following weights: c1,i =
∥w∥2

2σ
2
2

σ2
1w

2
i+∥w∥2

2σ
2
2

, and c2,i =
σ2
1wi

σ2
1w

2
i+∥w∥2

2σ
2
2

.

The averaged noisy input X̂ is finally fed to the base classifier g for prediction. The smoothed
classifier MS averages predictions (over noise draws) over the entire pipeline. The parameters of w
and g (and σ1 if not fixed) are learned during training and are fixed at inference/certification time.

4 Experiments

We evaluate on standard and L∞-certified test accuracy. Certified accuracy at radius r∞ is the
percentage of test samples that are correctly classified and have an L∞ certificate radius r∞X ≥ r∞.
Standard accuracy is obtained for r∞ = 0.

Datasets We evaluate on CIFAR-10 (Krizhevsky, 2009) in §4.1, CelebA (Liu et al., 2015) (specifically
the unaligned HD-CelebA-Cropper edition) in §4.2, and ImageNet (Deng et al., 2009) in §4.3. We
measure adaptivity on CIFAR-10 and CelebA by designing challenging benchmarks requiring
adaptivity, and measure scalability on ImageNet.

Models We choose the standard ResNet (He et al., 2016) models as base classifiers g with ResNet-110
for CIFAR-10 and ResNet-50 for CelebA and ImageNet. For ARS, our mask model w is a simplified
U-Net (Ronneberger et al., 2015) (see Appendix C.1 for details). For the noise budget, we find that a
fixed budget split performs reliably, and so in all experiments we split by σ1 = σ2 =

√
2σ.

Methods We compare to standard and strong static methods, design a baseline specifically for our
masking approach, and evaluate the only sound input-dependent methods prior to ARS. Cohen
et al. is the standard approach to RS (Cohen et al., 2019). UniCR (Hong et al., 2022) learns
the noise distribution for RS during training but is static during testing (while they propose an
input-adaptive variant, it is not sound so we restrict our comparison to the training variant). We
tune hyper-parameters, and perform a grid search for β (the parameter of the noise distribution) to
maximize certified accuracy. We find that β = 2 (Gaussian), or β = 2.25 (close to a Gaussian,
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Setting/Approach Cohen et al. Static Mask UniCR Súkeník et al.∆ ARS ∆

σ = 0.25, k = 32 70.6 (1.1) 73.9 (0.8) 69.8 (1.4) 68.6 (2.8) 72.6 (0.9)
σ = 0.5, k = 32 63.6 (2.0) 64.8(0.9) 62.8 (1.4) 59.1 (1.6) 64 (1.4)
σ = 1.0, k = 32 48 (0.7) 47.3 (1.3) 46.1 (0.9) 44.6 (1.0) 49.3 (0.6)
σ = 0.25, k = 48 71.6 (1.0) 72 (2.0) 69.7 (0.8) 65 (0.7) 75.5 (1.0)
σ = 0.5, k = 48 64.3 (0.2) 64.1 (1.6) 60.3 (0.6) 53.5 (1.8) 66 (1.6)
σ = 1.0, k = 48 42.5 (2.1) 45.1 (1.2) 44.3 (0.2) 34.1 (1.0) 47.6 (2.0)
σ = 0.25, k = 64 71.6 (0.9) 73.1 (3.2) 67.8 (0.5) 64.1 (0.8) 77 (1.8)
σ = 0.5, k = 64 63 (1.6) 62.5 (1.7) 58.7 (0.2) 45.1 (1.1) 69.9 (1.2)
σ = 1.0, k = 64 41.3 (1.8) 40.0 (0.5) 42.2 (0.6) 26.5 (0.7) 50.4 (2.5)
σ = 0.25, k = 96 65.3 (1.6) 71.8 (1.3) 68.8 (1.8) 45.5 (0.9) 78.3 (2.2)
σ = 0.5, k = 96 56.6 (2.4) 59.5 (1.4) 59.7 (1.3) 10.8 (2.3) 69.8 (1.2)
σ = 1.0, k = 96 33.8 (3.8) 36.9 (0.5) 41.3 (2.4) 10.4 (0.3) 56.3 (2.3)

Table 1: Standard Accuracy (r = 0) on CIFAR-10 (20kBG). Our 20kBG benchmark places CIFAR-10
images on larger background images. We report the mean accuracy and standard deviation over three seeds.
ARS achieves higher accuracy across noise σ and input dimension k (∆ indicates adaptivity). We provide results
with more σ levels in Appendix D.

with smaller tails), to perform best in high and low (k, σ) values, respectively (see Appendix D) for
details. Static Mask is our baseline that learns a fixed mask during training that does not adapt during
testing. The mask is directly parameterized as pixel-wise weights that we multiply with the input
and optimize jointly with the base classifier. Relative to ARS in Figure 1, this removesM1, sets
σ2 = σ, and makes w(.) = W static parameters rather than an adaptive prediction. Súkeník et al.
(2021) conditions the variance σ for RS on the input and is therefore test-time adaptive. We use code
provided by the authors as is. Comparing ARS to the static baselines measures the value of test-time
adaptivity, and comparing ARS to the variance adaptivity of Súkeník et al. measures the importance
of more high-dimensional and expressive adaptation.

4.1 CIFAR-10 Benchmark: Classification with Distractor Backgrounds

Input dimension is a key challenge in L∞ certification using RS (see §2.4). We design our 20kBG
benchmark to vary this parameter without affecting the task: we superimpose CIFAR-10 images
onto a larger distractor background from the 20k background images dataset Li et al. (2022a). The
backgrounds are split into train and test sets, and resized to k × k pixels (where k ≥ 32). The
CIFAR-10 image (of dimensions 32 × 32 × 3) is then placed at random along the edges of the
background image to maximize spatial variation. The spurious background increases the dimension
(= k × k × 3) of the input when k > 32, making L∞ certification with RS more challenging, but is
uninformative for the task of CIFAR-10 by construction. Our mask model (M1) needs to learn to
ignore the background to reduce the effective dimension of the input. For computational reasons,
we run all certification results on a 200 sample subset of the CIFAR-10 test set. Appendix D shows
extended results, details about hyperparameter tuning (C.3), and results on larger test-sets (D.1). We
set the failure probability of the certification procedure to 0.05, use 100 samples to select the most
probable class, and 50,000 samples for the Monte Carlo estimate of p+.

Table 1 summarizes the standard accuracy (r = 0) of each approach on the different settings. We vary
σ in {0.25, 0.5, 1.0} and k in {32, 48, 64, 96} to show the effect of noise levels and dimensionality
on the accuracy of different approaches (k = 32 corresponds to original CIFAR-10 images). Figure 2
shows the certified test accuracy at different radii r∞ for ARS and all baselines we consider.

We make three observations. First, ARS outperforms all the baselines under distractor backgrounds
(k > 32). Static mask is slightly better at k = 32, probably because CIFAR-10 images lack enough
"irrelevant" information for ARS to discard. This is precisely why we introduce this benchmark,
where we explicitly add such irrelevant information to input images. Indeed, at k > 32, we observe
that the standard accuracy of ARS improves, translating to an improved certified accuracy at all
certification levels, since more accurate and confident predictions give a larger certified radius r∞.

Second, as we grow the input dimension k, the accuracy of ARS remains either stable or increases,
whereas that of other baselines goes down, resulting in an increasing gap. For instance, at σ = 1.0,
the gap between ARS and the best baseline is 1.3% points for k = 32, 2.5% points for k = 48,
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(a) k = 32, σ = 0.5 (b) k = 48, σ = 0.5 (c) k = 96, σ = 0.5

(d) k = 64, σ = 0.25 (e) k = 64, σ = 0.5 (f) k = 64, σ = 1.0

Figure 2: Certified Test Accuracy on CIFAR-10 (20kBG). (a)-(c) show the effect of dimensionality for (a)
no background / k = 32, (b) k = 48, and (c) k = 96 for constant σ = 0.5. (d)-(f) show the effect of noise for
(d) σ = 0.25, (e) σ = 0.5 and (f) σ = 1.0 with dimensionality fixed to k = 64. Each line is the mean and the
shaded interval covers +/- one standard deviation across seeds.

k Input Images ARS Masks

32

64

96

Figure 3: (left) Original CIFAR-10 images superimposed on backgrounds for different k (except k = 32 which
is no background), and (right) their corresponding masks (grayscale) inferred by our mask model w. All masks
are for σ = 0.5. Appendix D.2 shows all the corresponding images across our multi-step architecture.

8.2% points for k = 64 and 15% points for k = 96. As k grows, the amount of relevant information
(a 32 × 32 × 3 CIFAR-10 image) remains the same, whereas the amount of spurious background
information increases. ARS’ mask is able to rule out spurious pixels, reducing the noise in the second
step (Figure 3). Thanks to this masking, ARS is much less sensitive to increases in dimensionality.

Third, we observe that except k = 32, ARS improves over all the baselines in low (σ = 0.25) to high
(σ = 1.0) noise regimes. In fact, this trend continues to persist in higher noise regimes (Appendix D).
Similar to previous observations, we notice that as we increase σ, other baselines’s accuracy drops
significantly whereas ARS accuracy drops much less, displaying higher noise tolerance.

ARS training and inference requires additional computation. To certify a single input (k = 32),
Cohen et al. (2019) takes ∼12 seconds while ARS takes ∼26 seconds (as measured on an NVIDIA
A100 80Gb GPU). This 2× overhead does however yield improved certified accuracy.

4.2 CelebA Benchmark: Classification Without Spatial Alignment

To evaluate ARS on a more realistic task with natural spatial variation, we use the CelebA face dataset
in its unaligned version. We focus on the “mouth slightly open” (label 21) binary classification task
because mouth location and shape vary. The input part relevant to this task is likely well-localized,
which affords an opportunity for the mask model to reduce the effective input dimension. The dataset
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Setting/Approach Cohen et al. Static Mask ARS
CelebA, σ = 0.25 94.3 (0.5) 93.0 (0.8) 97.0 (0.8)
CelebA, σ = 0.5 91.0 (0.8) 91.7 (0.9) 94.3 (0.9)
CelebA, σ = 1.0 83.3 (0.9) 84.7 (2.6) 91.0 (1.6)

Table 2: Standard test accuracy (r = 0) on CelebA (unaligned and cropped). ARS is equal or better.
Adaptivity handles the higher spatial dimensions (160× 160) and variation of these inputs.

(a) σ = 0.25 (b) σ = 0.5 (c) σ = 1.0

Figure 4: Certified test accuracy on CelebA (unaligned and cropped). We evaluate static methods and ARS
to measure the value of adaptivity. Each line is the mean and the shading covers ±1 standard deviation across
three seeds. Adaptivity helps at all noise levels.

consists of images with varied resolution, and meta-data about the position of different features,
including the mouth. To create a challenging benchmark, we randomly crop all images to 160× 160
pixels, which creates spatial variation in the mouth’s position. The only crop constraint is that the
mouth is ≥ 10 pixels from the edge to ensure sufficient input to solve the task. Figure 5 shows
example images from the test set, their respective masks from ARS, and the baseline static mask.

Figure 5: ARS masks are localized and input specific.

Figure 4 shows the certified accuracy for ARS,
Cohen et al. (2019), and static mask, for three
levels of the noise σ. First, both baselines per-
form very similarly. We can see from Figure 5
that the static mask is approximately identity
(notice the ≥ 0.99 scale), with only very slight
dimming on the edges. This is because the
mouth is not centred in our benchmark, so there
is no one-size-fits-all mask. Second, ARS is
able to predict a sparse mask that focuses on
areas likely to have the mouth. The mask adapts to each input at test time, which is what enables the
sparsity without performance degradation. Third, this sparse mask leads to a large noise reduction,
enabling ARS to drastically improve both standard and certified accuracy. For instance, with σ = 0.5,
ARS improves the standard accuracy from 91.0% to 94.3% (a 3.3 point improvement), while the
certified accuracy at r∞ = 0.004 jumps from 45.0% to 79.3% (a more than 30 point improvement!).
At lower noise (σ = 0.25) there is still an increase in standard accuracy from 94.3% to 97.0%, and an
increase in certified accuracy from 68.3% to 84.7% at r∞ = 0.002). At larger noise (σ = 1.0), ARS
sees significant increases (7.7% points in standard accuracy, and from 21.3% to 49.3% in certified
accuracy at r∞ = 0.008).

4.3 ImageNet Benchmark: Classification on the Standard Large-Scale Dataset

To evaluate the scalability of ARS we experiment on ImageNet (without any modification) with
σ = 0.25, 0.5, 1.0. For each noise level, we compare with Cohen et al. (2019), which we reproduce
for this large-scale setting. We evaluate two versions of ARS: our regular setting (End-To-End); and a
version that fixes the base classifier to the model trained as in Cohen et al. (2019), and only trains our
mask model for 10 epochs (Pretrain). The certified accuracy is plotted in Figure 6 and the standard
accuracy is reported in Table 3.

When only training the mask model, certified accuracy remains close to that of Cohen et al. (2019)
at all radii and noise levels. ARS trained end-to-end improves both standard and certified accuracy.
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Setting/Approach Cohen et al. ARS (Pretrain) ARS (End-To-End)
ImageNet, σ = 0.25 66.5 (0.009) 67.4 (0.002) 65.7 (0.006)
ImageNet, σ = 0.5 57.2 (0.009) 56.0 (0.003) 57.4 (0.010)
ImageNet, σ = 1.0 43.6 (0.005) 43.8 (0.002) 44.5 (0.010)

Table 3: Standard test accuracy (r = 0) on ImageNet. ARS maintains standard accuracy.

The standard accuracy (at r = 0) increases from 57.2% to 57.4% and from 43.6% to 44.5% when
σ = 0.5 and σ = 1, respectively. For σ = 0.25, standard accuracy for ARS is close but slightly lower
than Cohen et al. (2019), while the pretrained ARS outperforms Cohen et al. (2019) from 66.5% to
67.4%. Appendix F discusses other ARS improvements without certification.

Certified accuracy increases at larger σ. For instance at σ = 0.5, ARS improves certified accuracy
at r∞ = 0.001 from 48.9% to 50.5%. At larger noise σ = 1.0, ARS improves certified accuracy
at r∞ = 0.005 from 21.7% to 23.1%. This shows that ARS’ adaptivity generalizes outside of the
specialized benchmarks we designed, and can scale to large datasets and complex classification tasks.

(a) σ = 0.25 (b) σ = 0.5 (c) σ = 1.0

Figure 6: Certified test accuracy on ImageNet for σ = 0.25, 0.5, 1. We plot the mean and the shading covers
±1 standard deviation for three seeds. ARS is equal or better than non-adaptive RS (Cohen et al.) at large scale.

5 Discussion

Limitations: The multi-step adaptivity of ARS improves certification at the cost of increased model
size and computation for RS. This impacts both training and testing computation, and is especially
costly in the context of RS due to the Monte Carlo estimation of the model’s expected predictions
(over several forward passes at inference time). While we empirically show improvement by ARS, it
would be interesting and important to investigate how it combines with other RS improvements such
as adversarial training (Salman et al., 2019), consistency regularization (Jeong and Shin, 2020), higher
order certification (Mohapatra et al., 2020), double sampling (Li et al., 2022b), and denoising by
diffusion (Carlini et al., 2022). Lastly, our adaptive masking technique provides improved certificates
for the L∞ norm, but does not have the same effect for other norms such as L2 (see remarks in §2.4).
It is plausible that ARS’ adaptivity can lead to improvements under alternative norms, by leveraging
different DP mechanisms and updates. We leave this exploration for future work.

Implications: Revisiting heuristic adaptive defences (as surveyed in Croce et al. (2022)) through
the lens of ARS could help improve the empirical performance of provable defences. ARS may
require extensions, but could eventually enable the formal analysis of input purification (e.g., Song
and Kim (2018); Nie et al. (2022); Yoon et al. (2021)), or leverage DP-SGD (Abadi et al., 2016) to
analyze defences that update by test-time optimization (Alfarra et al., 2022b; Hwang et al., 2022;
Mao et al., 2021). Going further, one could leverage the vast DP literature to extend ARS, enabling
fully-adaptive variance defences inspired by Alfarra et al. (2022a) by leveraging privacy odometers
(Rogers et al., 2016; Lécuyer, 2021; Whitehouse et al., 2023).

To conclude: we introduced Adaptive Randomized Smoothing (ARS) to reconnect RS with DP theory,
to propose a new two-step defence for deep image classification, and to rigorously analyze such
adaptive defences that condition on inputs at test time. This framework opens promising avenues for
designing models that are adaptively and soundly robust with provable guarantees about their updates
on natural and adversarial inputs.
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A f -DP Background

For this background we use the DP mechanism terminology. A mechanismM(.) is a randomized
computation taking an input and returning one sample from the distribution of outputs for this input:
m ∼M(x) with input x and output m. In ARS, each model step corresponds to an f -DP mechanism.

Definitions. Dong et al. (2019; 2022) formalize privacy as a bound on the power of hypothesis
tests. Consider any two neighbouring inputs: in the most common DP applications, X,X ′ are two
databases differing in one element; in the case of ARS against an Lp adversary, X,X ′ ∈ Rd are any
two inputs such that X −X ′ ∈ Bp(r). Intuitively a randomized mechanismM is private if, for any
such neighbouring inputs, the distributionsM(X) andM(X ′) are hard to distinguish. That is, by
looking at a sample output from mechanismM, it is hard to guess whetherM ran on X or on X ′.

In f -DP (Dong et al., 2019; 2022) “hard to distinguish” is defined by a hypothesis testing problem:

H0 : the input was X vs. H1 : the input was X ′.

The output m ∼M serves as input to a rejection rule ϕ(.) ∈ [0, 1] (note: to preserve typical notations,
lower-case ϕ is the rejection rule, and upper-case Φ is the standard normal CDF). The rejection rule
rejects H0 with probability ϕ(m), so ϕ(m) = 0 predicts that X was the input, and ϕ(m) = 1 that
X ′ was.

Given a rejection rule ϕ, we define its Type I error αϕ and type II error (or one minus the power of
the rule) βϕ as:

αϕ ≜ Em∼M(X)[ϕ(m)] βϕ ≜ 1− Em∼M(X′)[ϕ(m)]

Intuitively, αϕ is the expected amount of rejection ofH0 when the hypothesis is correct (X was in
input, but we think X ′ was), also called the level of the rejection rule. On the flip side, βϕ is the
expected amount of non-rejection underH1 (X ′ was in input, but we think X was). 1− βϕ is called
the power of the rejection rule.

For any two distributionsM(X) andM(X ′), we define the trade-off function T
(
M(X),M(X ′)

)
:

[0, 1]→ [0, 1] that quantifies the minimum amount of type II error achievable at each value of type I
error by any (measurable) rule; or equivalently the maximum power of any rule at each level:

∀α ∈ [0, 1], T
(
M(X),M(X ′)

)
(α) = inf

ϕ
{βϕ : αϕ ≤ α}

Now we define f -DP: for any trade-off function f , a mechanismM is f -DP if, for any neighbouring
inputs X,X ′,

T
(
M(X),M(X ′)

)
≥ f

These definitions are the main technical tools we need to prove Proposition 2.1. Corollary 2.2 only
adds the formula for f for the Gaussian mechanism, given in Section 2.1.

Composition. All other results rely on the above plus the adaptive composition of f -DP mecha-
nisms. Such composition is key to all DP theory and algorithm design. Consider a sequence of N
mechanismsMi, such that each mechanism is fi-DP with regards to X,X ′, and depends on the neigh-
bouring input as well as the output of all previous mechanisms. More formally, underH0 we have
mi ∼ Mi(X,m<i), and under H1 we have mi ∼ Mi(X,m<i), where m<i ≜ (m1, . . . ,mi−1).
Concretely, eachMi is fi-DP with regards to X,X ′ for fi known in advance, but the actual compu-
tation made byMi can depend on m<i (as long as it is fi-DP). We leverage this adaptivity to lower
the noise variance in our method’s second step while keeping f2 fixed (see §3).

We need two more results to define the composition of a sequence of mechanisms. First, Proposition
2.2 in Dong et al. (2019; 2022) shows that for any trade-off function f , there exist two distributions
Pf , Qf such that T (Pf , Qf ) = f . Call any such pair of distributions a representative pair of f .
Second, we define the composition operator ⊗ by f ⊗ g = T (Pf × Pg, Qf × Qg). That is, the
composition operator between two trade-off functions is the trade-off function between the product
distributions on their representative pair. Then Theorem 3.2 in Dong et al. (2019; 2022) shows that:

M : X → (M1(X), . . . ,MN (X, y<i)) is f1 ⊗ . . .⊗ fN -DP.

Concretely, the mechanism that returns the sequence of results for all compute adaptive MN is
f1 ⊗ . . . ⊗ fN -DP. The previous definitions, as well as this composition result, is what we use to
prove Theorem 2.3 and Proposition 2.4.
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B Proofs

Proposition 2.1 (f -DP Robustness). LetM : X → Y be f -DP for Bp(r) neighbourhoods, and
let MS : X → argmaxy∈Y P(M(X) = y) be the associated smooth classifier. Let y+ ≜ MS(X)
be the prediction on input X , and let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥ p+ ≥ p− ≥
maxy− ̸=y+

P(M(X) = y−). Then:

f(1− p+) ≥ 1− f(p−)⇒ ∀e ∈ Bp(r), MS(X + e) = y+

Proof. Let us first consider any runner-up class y−. Calling M the random variable for M’s
prediction, consider the rejection rule ϕ = 1{M = y−}, where 1 is the indicator function. Denoting
α ≜ EM(X)(ϕ), and using the fact that M is f -DP for Bp(r) neighbourhoods, we have that
∀e ∈ Bp(r):

P(M(X + e) = y−) = EM(X+e)(ϕ)

≤ 1− f(α) ≤ 1− f(p−),
(8)

where the last inequality is because α = EM(X)(ϕ) = P(M(X) = y−) ≤ p−, and f is non-
increasing so f(α) ≥ f(p−) and hence 1− f(α) ≤ 1− f(p−).

Let us now consider the predicted class y+. Keeping the same notations, and defining the rule
ϕ′ = 1{M ̸= y+} = 1− 1{M = y+}. Then α′ = EM(X)(ϕ

′) = 1− P(M(X) = y+) ≤ 1− p+,
and EM(X+e)(ϕ

′) ≤ 1− f(α′) ≤ 1− f(1− p+), yielding:

P(M(X + e) = y+) = 1− EM(X+e)(ϕ
′)

≥ f(1− p+).
(9)

Putting Equations (8) and (9) together, we have that P(M(X+e) = y+) ≥ f(1−p+) ≥ 1−f(p−) ≥
P(M(X + e) = y−) and thus mS(X + e) = y+.

Note that we do not have to chose a rule ϕ ∈ {0, 1}, but could instead return any number in [0, 1],
such as the logits of the base classification model, yielding the following definition for the smoothed
classifier MS : X → argmaxy∈Y E(M(X)y).

Proposition 2.2 (RS from f -DP). LetM : X → g(X + z), z ∼ N (0, σ2Id), and MS : X →
argmaxy∈Y P(M(X) = y) be the associated smooth model. Let y+ ≜ MS(X) be the pre-
diction on input X , and let p+, p− ∈ [0, 1] be such that P(M(X) = y+) ≥ p+ ≥ p− ≥
maxy− ̸=y+

P(M(X) = y−). Then ∀e ∈ B2(rx), MS(X + e) = y+, with:

rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
.

Proof. X :→ X + z, z ∼ N (0, σ2) is a Gaussian mechanism. By Equation (2), for the Br(r)
neighbouring definition, it is G r

σ
-DP. By post-processingM is also G r

σ
-DP.

Applying Proposition 2.1, we have that G r
σ
(1− p+) ≥ 1−G r

σ
(p−)⇒ ∀e ∈ B2(r), mS(X + e) =

y+. Let us find rX = sup {r : G r
σ
(1 − p+) ≥ 1 − G r

σ
(p−)}. Since G r

σ
(.) as a function of r is

monotonously decreasing this will happen at G rX
σ
(1− p+) = 1−G rX

σ
(p−), that is:

Φ
(
Φ−1(p+)−

rX
σ

)
= 1− Φ

(
Φ−1(1− p−)−

rX
σ

)
⇒ Φ−1(p+)−

rX
σ

= −Φ−1(1− p−) +
rX
σ

⇒ Φ−1(p+)−
rX
σ

= Φ−1(p−) +
rX
σ

⇒ rX =
σ

2

(
Φ−1(p+)− Φ−1(p−)

)
,

where the first implication holds because by symmetry of the standard normal 1− Φ(x) = Φ(−x),
and because Φ is strictly monotonous ; the second because similarly, Φ−1(1− p) = −Φ−1(p).
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C Experiment Details

C.1 Mask Architecture

Figure 7 shows the architecture of our Mask model w (M1). We adapt a UNet architecture to preserve
dimensions, and use a Sigmoid layer at the end of the model to output values between 0 and 1 for
mask weights. We set up our UNet hyperparameters as : in_channels=3, out_channels=1 (to out put
a mask), base_channel=32, channel_mult={1,2,4,8}.

Figure 7: UNet structure

CIFAR-10 CelebA ImageNet
GPU single 24G RTX4090 single 24G RTX4090 single 80G A100
epoch 100 24 100(10+90)

train batch size 256 64 300
test batch size 20 100 100

base channel 32 64 16
optimizer AdamW SGD SGD

Mask lr 1e-3 5e-2 5e-2
Model weight decay 1e-4 - 1e-4
(UNet) momentum 0.9 - 0.9

step size 40 - 30
gamma 0.5 - 0.1
model ResNet110 ResNet50 ResNet50

optimizer AdamW SGD SGD
Base lr 1e-2 5e-2 1e-1
Classifier weight decay 1e-4 - 1e-4

momentum 0.9 - 0.9
step size 30 3 30
gamma 0.1 0.8 0.1

Table 4: Hyperparameters for training ARS. Check Appendix C.3 for more details of CIFAR-10
hyperparameters.

C.2 Hyperparameter tuning for CelebA

Table 4 provides the details of our ARS models’ hyper-parameters. On the CelebA dataset, we tune
the hyper-parameters in the ARS, Cohen et al. (2019), and static mask settings at σ = 0.75. In all
settings, we settle on SGD with learning rate 0.05 and a step learning rate scheduler (step size of 3
and γ = 0.8) for the base classifier. In the static mask setting, we use SGD with learning rate 0.01.

C.3 Hyperparameter tuning for CIFAR-10 BG20k

For the base classifier g in Cohen et al. (2019), Static Mask and ARS experiments, we tune the
optimizer and its hyperparameters using k = 64, σ = 1.5 as the testbed. Based on these tuning
experiments, we chose AdamW as the optimizer with an initial learning rate of 0.01 and weight decay
to 0.0001. We scale the learning rate by 0.1 every 30th epoch, with a batch size of 256. For the mask
model w in ARS experiments, we again used the AdamW optimizer with an initial learning rate of
0.001, weight decay of 0.0001, whilst scaling the learning rate by 0.5 every 40th epoch. We used the
same hyperparameters for all k’s and σ’s for these setups.

For Súkeník et al. (2021), for k = 32, 48, 64, we tune the hyperparameters using k = 64 as the
testbed. We kept the optimizer same as used in the author’s code (SGD), setting the initial learning
rate to 0.01, momentum to 0.9 and weight decay to 0. We scaled the learning rate by 0.1 every 30th

epoch. We tune k = 96’s parameters separately. We start with an initial learning rate 0.1, keeping
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the rest of hyperparameters same as for k = 32, 48, 64. Note that for k = 96, we could not get the
standard accuracy to improve upon random baseline for σ = {0.5, 0.75, 1.0, 1.5}, despite extensively
tuning the learning rate.

k σ = 0.12 σ = 0.25 σ = 0.5 σ = 0.75 σ = 1.0 σ = 1.5
32 2.25 2.25 2.25 2.25 2.25 2.25
48 2.0 2.0 2.25 2.0 2.25 2.0
64 2.25 2.0 2.25 2.0 2.0 2.0
96 2.0 2.0 2.25 2.25 2.25 2.25

Table 5: UniCR β chosen for each k, σ setting.

For UniCR, we tune β (the parameter of the generalized normal distribution for the noise) using
σ = 0.75 and k = 48 as the testbed. We perform grid search on β and find that β = 2.0 or β = 2.25
(Gaussian and close to a Gaussian, but with a wider more and shorted tails) perform best. For each
k, σ setting, we train 3 models with β = 2.25 and 2.0 and choose the β giving highest mean standard
accuracy. The chosen β for each setting is given in Table 5. For each setting we also tune optimizer
hyper-parameters. At k = 32, we use SGD optimizer. We use a learning rate of 0.01, momentum
of 0.9 and weight decay of 0.0005 with a step learning rate scheduler (30 step and γ = 0.1). At
k = 48, 64, 96 we use training batch size 256, 100 epochs, and AdamW optimizer. We use a learning
rate of 0.001 with step learning rate scheduler (30 step size and γ = 0.5).
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(a) σ = 0.12 (b) σ = 0.25 (c) σ = 0.5

(d) σ = 0.75 (e) σ = 1.0 (f) σ = 1.5

Figure 8: k = 32 certified test accuracy results for CIFAR-10 (20kBG) (a)-(f) show the effect of increasing
σ. These results are in our 20kBG setting where= a CIFAR-10 image is placed randomly along the edges of a
background image. Each line is the mean and the shaded interval covers +/- one standard deviation across seeds.

D Additional Results on CIFAR10 BG20k Benchmark

We show here full sweep of results for CIFAR-10 Bg20k benchmark for k = 32, 48, 64, 96 and
σ = 0.12, 0.25, 0.5, 0.75, 1.0, 1.5 for all our baselines and ARS. Similar to results presented in
Table 1, we report the mean accuracy and standard deviation over three seeds.

k σ Cohen et al. Static Mask UniCR Súkeník et al.∆ ARS ∆

32

0.12 79 (0.7) 78.6 (0.9) 77.5 (1.) 71.8 (1.6) 78.5 (0.7)
0.25 70.6 (1.) 73.9 (0.8) 69.8 (1.4) 68.6 (2.8) 72.6 (0.9)
0.5 63.6 (2.) 64.8 (0.9) 62.8 (0.8) 59.1 (1.6) 64 (1.4)
0.75 55.5 (0.8) 57.8 (0.8) 53.1 (0.8) 49.3 (0.2) 57.3 (0.6)
1.0 48 (0.7) 47.3 (1.3) 46.1 (0.9) 44.6 (1.0) 49.3 (0.6)
1.5 38.6 (0.2) 39.1 (0.8) 36.8 (0.8) 36.9 (0.1) 38.3 (1.0)

48

0.12 80.1 (0.8) 80.9 (0.7) 77.0 (2.9) 73 (0.1) 83.6 (0.4)
0.25 71.6 (1.0) 72 (2.0) 69.7 (0.8) 65 (0.07) 75.5 (1.0)
0.5 64.3 (0.2) 64.1 (1.6) 60.3 (0.6) 53.5 (1.8) 66.0 (0.8)
0.75 52.5 (1.2) 56 (0.8) 52.7 (0.6) 41.8 (2.4) 57.6 (1.5)
1.0 42.5 (2.1) 45.1 (1.2) 44.3 (0.2) 34.1 (1.0) 47.6 (2.1)
1.5 30.8 (0.2) 34.9 (2.4) 32.3 (0.2) 25.5 (1.0) 34.1 (2.9)

64

0.12 80.9 (1.0) 81.3 (1.0) 76.7 (0.8) 73.8 (0.2) 82.3 (1.0)
0.25 71.67 (0.9) 73.1 (3.2) 67.8 (0.5) 64.1 (0.8) 77 (1.8)
0.5 61.6 (2.7) 64 (1.4) 58.7 (0.2) 45.1 (1.1) 65.4 (1.8)
0.75 49.4 (2.) 51.6 (1.0) 50.7 (0.2) 31.3 (2.0) 56.5 (2.6)
1.0 41.3 (1.8) 40 (0.5) 42.2 (0.6) 26.5 (0.7) 50.4 (2.5)
1.5 28.3 (0.2) 25.9 (3.2) 30.0 (1.8) 15.8 (2.7) 30.6 (1.0)

96

0.12 79.1 (0.8) 79.6 (0.4) 77.5 (1.1) 66 (0.7) 80.3 (3.7)
0.25 65.3 (1.6) 71.8 (1.3) 68.8 (1.8) 45.5 (0.9) 78.3 (2.2)
0.5 56.6 (2.4) 59.5 (1.4) 59.7 (1.3) 10.8 (2.3) 69.8 (1.2)
0.75 45.3 (3.4) 48 (4.3) 50.2 (0.5) 10.2 (0.4) 63.6 (3.5)
1.0 33.8 (3.8) 36.9 (0.5) 41.3 (2.4) 10.4 (0.3) 56.3 (2.3)
1.5 26 (1.4) 25.1 (0.6) 31.0 (1.4) 10.8 (1.4) 39.1 (2.5)

Table 6: Standard Accuracy (r = 0) on CIFAR-10 (20kBG). Our 20kBG benchmark places CIFAR-10
images on larger background images. We report the mean accuracy and standard deviation over three seeds.
ARS achieves higher accuracy across noise σ and input dimension k. ∆ indicates adaptivity.
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(a) σ = 0.12 (b) σ = 0.25 (c) σ = 0.5

(d) σ = 0.75 (e) σ = 1.0 (f) σ = 1.5

Figure 9: k = 48 certified test accuracy results for CIFAR-10 (20kBG) (a)-(f) show the effect of increasing
σ. These results are in our 20kBG setting where a CIFAR-10 image is placed randomly along the edges of a
background image. Each line is the mean and the shaded interval covers +/- one standard deviation across seeds.

(a) σ = 0.12 (b) σ = 0.25 (c) σ = 0.5

(d) σ = 0.75 (e) σ = 1.0 (f) σ = 1.5

Figure 10: k = 64 certified test accuracy results for CIFAR-10 (20kBG) (a)-(f) show the effect of increasing
σ. These results are in our 20kBG setting where a CIFAR-10 image is placed randomly along the edges of a
background image. Each line is the mean and the shaded interval covers +/- one standard deviation across seeds.

D.1 Impact of Certification Test-set Size

The baseline results in Table 6 are lower than those reported by Cohen et al. (2019) (Figure 6).
This is a result of our certifying over a smaller subset of the test set (the released code from Cohen
et al. (2019)1 uses a subset of size 500, while the paper says the certification was on the full test
set). In Table 7 we report the standard accuracy (r = 0) on the same 500 samples subset of the
CIFAR-10 test set as used in the code released by Cohen et al. (2019). We show results for k = 32,
which is the plain CIFAR-10 task, using both the hyper-parameters from Cohen et al. (2019), our
own optimized hyper-parameters (the most notable change is that we use AdamW), and ARS. We
make three observations. First, as it turns out, our 200 samples subset used for results in Table 6

1https://github.com/locuslab/smoothing/blob/78a4d949e4f627d000a78908e001f8ca66c92943/
experiments.MD
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(a) σ = 0.12 (b) σ = 0.25 (c) σ = 0.5

(d) σ = 0.75 (e) σ = 1.0 (f) σ = 1.5

Figure 11: k = 96 certified test accuracy results for CIFAR-10 (20kBG) (a)-(f) show the effect of increasing
σ. These results are in our 20kBG setting where a CIFAR-10 image is placed randomly along the edges of a
background image. Each line is the mean and the shaded interval covers +/- one standard deviation across seeds.

σ Samples Approach
Cohen et al. Cohen et al. w/ AdamW ARS

0.12
200 77.2 (2.7) 79.0 (0.7) 78.5 (0.7)
500 79.6 (2.1) 82.1 (0.4) 82.3 (1.1)
10k 80.3 (0.6) 82.7 (0.6) 83.4 (0.5)

0.25
200 70.7 (3.7) 70.6 (1.0) 72.6 (0.9)
500 72.4 (2.6) 75.6 (0.9) 75.9 (0.9)
10k 73.7 (2.6) 77.2 (0.2) 77.7 (0.1)

0.5
200 62.0 (0.4) 63.6 (2.0) 64.0 (1.4)
500 63.1 (0.7) 65.2 (0.9) 65.9 (0.7)
10k 64.3 (0.5) 66.1 (0.3) 67.9 (0.3)

1.0
200 45.0 (1.5) 48.0 (0.7) 49.3 (0.6)
500 45.9 (1.6) 49.1 (0.4) 50.5 (0.8)
10k 46.8 (1.7) 50.0 (0.5) 51.5 (0.4)

Table 7: k = 32 standard accuracy (r = 0) on CIFAR-10 (20kBG). We report the mean accuracy and
standard deviation over three seeds. We compare three approaches: Cohen et al. (2019) trained with the
hyper-parameters they report in their GitHub repository, Cohen et al. (2019) trained with the hyper-parameters
we report in 4, and ARS. We train models with each approach at σ = 0.12, 0.25, 0.5, 1.0. The corresponding
models are certified on 200, 500, and 10,000 samples.

is more challenging, and accuracy values are systematically lower (by about 2% points) than over
500 samples and the full test set (10k samples). Using the same 500 samples subset yields accuracy
values very close to those reported by Cohen et al. (2019) on their hyper-parameters. Second, over
all samples sizes 200, 500, and 10k, our hyper-parameters significantly improve the accuracy of RS
(by about 3% points consistently), confirming that we are making a fair comparison between the
best RS models we could find and ARS. Third, at k = 32 ARS provides modest improvements over
tuned RS, as CIFAR-10 images are well cropped and low-dimensional, providing less opportunity for
dimension reduction through masking, and hence lower ARS improvements.

D.2 CIFAR-10 BG20k figures

Figure 12, Figure 13, Figure 14 and Figure 15 shows figures of different stages in our ARS architecture
(Figure 1). In all of these figures, 1st row corresponds to input images X , 2nd row corresponds to
images right afterM1, 3rd row corresponds to ARS masks, 4th row corresponds to element-wise
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(a) σ = 0.25 (b) σ = 1.0

Figure 12: Figures at different stages in our ARS architecture for CIFAR-10 k = 32 input images. Check
Appendix D.2 for detailed information about each row

(a) σ = 0.25 (b) σ = 1.0

Figure 13: Figures at different stages in our ARS architecture for CIFAR-10 BG20k k = 48 input images.
Check Appendix D.2 for detailed information about each row

product of input X and ARS masks, 5th row corresponds to images right afterM2 and 6th row
corresponds to images right after averagingM1,M2.
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(a) σ = 0.25 (b) σ = 1.0

Figure 14: Figures at different stages in our ARS architecture for CIFAR-10 BG20k k = 64 input images.
Check Appendix D.2 for detailed information about each row

(a) σ = 0.25 (b) σ = 1.0

Figure 15: Figures at different stages in our ARS architecture for CIFAR-10 BG20k k = 96 input images.
Check Appendix D.2 for detailed information about each row
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E Additional Results on CelebA

Figure 16: The localized ARS masks produce un-noised mouth regions after averaging.

Figure 16 shows how adaptive masking reduces the noise around areas that are important to classi-
fication. The images follow our architecture visualized Figure 1. The mask model is provided the
first query noised images as input. The learned masks, presented in the bottom left, are sparse and
highly concentrated around the area of interest—the mouth area. The second query noised images
(after weighted average) use the mask to clearly reduce the noise around the mouth. This large noise
reduction enables ARS to outperform static masking and Cohen et al. (2019), as shown on Figure 4.

σ Cohen et al. Static Mask ARS
0.12 94.7 (0.5) 95.7 (1.2) 96.3 (0.9)
0.25 94.3 (0.5) 93.0 (0.8) 97.0 (0.8)
0.5 91.0 (0.8) 91.7 (0.9) 94.3 (0.9)
0.75 88.7 (1.2) 89.0 (1.4) 92.3 (0.9)
1.0 83.3 (0.9) 84.7 (2.6) 91.0 (1.6)
1.5 77.7 (2.5) 74.3 (1.7) 81.0 (2.2)

Table 8: Standard Accuracy (r = 0) on CelebA (unaligned and
cropped). We report the mean accuracy and standard deviation over
three seeds.

We show here a full set of results
for the CelebA benchmark over all
σ = 0.12, 0.25, 0.5, 0.75, 1.0, 1.5 for
Cohen et al. (2019), static masking,
and ARS. Similarly to the results in
Table 2, we report the mean standard
accuracy and standard deviation over
three seeds in Table 8. The certified
accuracies are plotted in Figure 17.
We see that at all σ, ARS has the high-
est standard accuracy.

(a) σ = 0.12 (b) σ = 0.25 (c) σ = 0.5

(d) σ = 0.75 (e) σ = 1.0 (f) σ = 1.5

Figure 17: Certified test accuracy on CelebA (unaligned and cropped). Each line is the mean and the
shading covers ±1 standard deviation across three seeds. Adaptivity helps at all noise levels.
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F Additional Results on ImageNet

Figure 18: The localized ARS masks produce un-noised object regions after averaging. For σ = 1.

Figure 19: For σ = 0.5.

Figure 20: For σ = 0.25.

Figures 18 to 20 show how adaptive masking reduces the noise around areas that are important to
classification for ImageNet. The images follow our architecture visualized Figure 1. The mask model
is provided the first query noised images as input. The learned masks, presented in the bottom left,
are sparse and concentrated around the area of interest (the bird, or any labelled object). The second
query noised images after weighted average use the mask to clearly reduce the noise around the bird.

Setting/Approach Cohen et al. ARS (Pretrain) ARS (End-To-End)
ImageNet, σ = 0.25 68.5 (0.1) 69.5 (0.0) 70.1 (0.2)
ImageNet, σ = 0.5 60.7 (0.5) 63.2 (0.1) 64.2 (0.2)
ImageNet, σ = 1.0 47.9 (0.1) 52.1 (0.0) 53.8 (0.3)

Table 9: Test accuracy without certification on ImageNet.

An interesting observation is that on ImageNet, ARS yields larger improvements to the test accuracy
without certification. We follow the certification procedure of Cohen et al. (2019), which first
determines the predicted class, and then certifies it if and only if the probability of this predicted class
is such that p+ ≥ 0.5 (that is, it groups all other classes into one non-predicted class). If this is not
the case, the prediction will count as not certified at r = 0, even if the predicted class is still correct.
We keep this procedure for consistency with prior work, but on a task with a large number of classes
like in ImageNet, the accuracy at r = 0 can be much lower as the non-certified accuracy.

We noticed that ARS significantly improves this non certified accuracy, while not improving the
accuracy at r = 0 as much (see Section 4.3). In effect ARS leads to more correct predictions, but
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this (correct) predicted class has p+ < 0.5, so the accuracy at r = 0 does not increase. Table 9
shows this effect by comparing the test accuracy (no certification at all) across all methods. Under
ARS, the test accuracy increases from 68.5% to 70.1% when σ = 0.25, from 60.7% to 64.2% when
σ = 0.5, and from 47.9%to 53.8% for σ = 1.0. In summary, ARS achieves best test accuracy
(without certification) for all the noise levels. This suggests that ARS helps more than shown by the
default certification approach, and that a finer analysis that accounts for the probability of all classes
could yield further improvements in certified accuracy.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction identify the purpose of our paper and our
theoretical, technical, and empirical contributions. We provide theoretical results in Section 2
with detailed proofs, and comprehensive experimental results in Section 4 to support our
technical claims and contributions for test-time adaptive certification for robustness. Our
choice of theoretical framework, task scope, and evaluation datasets are all present in the
abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We identify limitations in Section 5 and in particular call out computational
overhead and the need to assess the combination of ARS with other improvements to RS
(which are compatible in principle, but require experiment to measure and verify).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present the theoretical results in Section 2, where we cover the main results,
and provide Appendix B with further detailed assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The method is described in the text, and to ensure sufficient detail, we addi-
tionally provide appendices and supplementary material that includes the anonymized code
for our method. The experiments identify their settings and hyperparameters, such as noise
levels and input image dimensions, and these settings can be verified by inspection of the
results for our method and the baselines like Cohen et al. (2019). By relying on standard
base models, such as ResNet-50, our work is made more reproducible by following the
conventions of existing papers. For modeling specific to our contribution, such as a the
mask model, we have taken care to provide more detail in the appendix. Our adaptivity
benchmarks, while our own design, are simple to implement (through padding and cropping)
and our choices of how to transform the base public datasets are described in the text. In
addition, we have incorporated reviewers feedback in the camera ready version.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit our codes and necessary command in a zip file. For the camera
ready version, we have open sourced our code at https://github.com/ubc-systopia/
adaptive-randomized-smoothing/tree/main. The hyperparameter settings are listed
in Table 4. The datasets we used are cited and has open access to the public. .

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail our experimental setting at a high-level in Section 4 and then elabo-
rate in each subsection. We list our experimental setting in Section 4 and the hyperparameters
in Table 4. For baselines, we rely on the reference hyperparameter settings from the papers
for Cohen et al. (2019), rely on code and hyper-parameters shared by the authors for Súkeník
et al. (2021) (the code is not public), and tune hyper-parameters and β for Hong et al. (2022)
(details in §C).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We ran all experiments end-to-end over three different seeds, and show both
mean and standard deviation on plots and tables (except on ImageNet, for resources reasons).
The factors of variability are those that are standard and natural to deep learning and
robustness by randomized smoothing: initialization of parameters, train-time sampling
of the data, train-time sampling of augmentations, and test-time sampling of noise for
certification.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing resources are included in Table 4. The resources are single
GPUs, which while required are sufficiently standard for this field as to be understandable
and accessible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and can confirm that we
conform to them in every respect when we conducted research in the paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper improves the robustness of existing machine learning models to
adversarial examples. Adversarial examples have been proposed for a limited number of
beneficial use cases, such as censorship or surveillance evasion, but overall more robust and
trustworthy ML models can benefit the increasingly broad deployment of machine learning,
including in security and safety-critical applications. As a paper with a theoretical emphasis
and empirical evaluation on well-established benchmarks, this work does not have additional
societal impact beyond the norm.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not have a high risk for misuse, given its theoretical portion
on proofs for robustness, and its empirical portion on the robustness evaluation of standard
image classifiers. As such no special safeguards are needed.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All papers, code, and assets, etc. have been properly cited in the paper. We
make use of the the reference code provided by the cited papers by their authors. We make
use of standard and existing datasets, and therefore do not collect or introduce additional
assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not collect or include new assets. To the extent that our own method
code is an asset, it is the creation of the authors, and it is included anonymously and
confidentially in our supplementary materials. If accepted, the code will be released under
an open license such as BSD-2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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