
The Benefits of Balance:
From Information Projections to Variance Reduction

Lang Liu∗ Ronak Mehta∗ Soumik Pal Zaid Harchaoui

University of Washington

Abstract

Data balancing across multiple modalities and sources appears in various forms in
foundation models in machine learning and AI, e.g. in CLIP and DINO. We show
that data balancing across modalities and sources actually offers an unsuspected
benefit: variance reduction. We present a non-asymptotic statistical bound that
quantifies this variance reduction effect and relates it to the eigenvalue decay of
Markov operators. Furthermore, we describe how various forms of data balancing
in contrastive multimodal learning and self-supervised clustering can be better
understood, and even improved upon, owing to our variance reduction viewpoint.

1 Introduction

Deep neural networks have shown remarkable success at learning task-specific representations of
data when provided supervision from massive amounts of labeled training examples. Recent trends,
however, have shifted toward task-agnostic, universal representations that may be easily fine-tuned or
even have zero-shot capabilities out of the box. Supervised learning, stricto sensu, is too limited a
framework for these billion-parameter, data-hungry models, and a question at the heart of modern
machine learning is learning from unlabeled, partially labeled, or weakly labeled data.

This need has paved the way for the current generation of self-supervised learning (SSL) approaches
that circumvent the need for large amounts of “strong” labels. In SSL, a model is trained on a generic
pseudo-task suited for unlabeled data, such as relating image-caption pairs or augmentations of
the same image. Despite modern foundation models such as DINO [Caron et al., 2021] and CLIP
[Radford et al., 2021] being trained in this fashion, many aspects of SSL remain mysterious.

In particular, the training process of self-supervised models often transcends the rules of the standard
empirical risk minimization (ERM) toolkit. ERM combines two well-understood techniques: mini-
batch sampling and gradient-based optimization using backpropagation. On the other hand, SSL adds
clever, yet less-understood techniques to the training pipeline. To illustrate this, consider a minibatch
of independent and identically distributed (i.i.d.) training examples (X1, Y1), . . . , (Xn, Yn) ∼ P ,
where P is a joint probability measure on sample spaces X × Y (e.g. feature-label or image-caption
pairs) and let Pn = 1

n

∑n
i=1 δ(Xi,Yi) be the empirical distribution. For a model parameterized by

θ ∈ Rd with loss function hθ, a stochastic learning algorithm involves computing the minibatch loss

EPn
[hθ(X,Y)] =

1

n

n∑
i=1

hθ(Xi, Yi) (1)

and backpropagating through it to produce a minibatch stochastic gradient estimate. The algorithm
then proceeds with the stochastic gradient descent (SGD) or a variant thereof (e.g., Adam, SGD with
momentum, etc). Self-supervised methods often modify this recipe by intervening on the optimization
algorithm in a minibatch-specific way.

∗These authors contributed equally to this work.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

For example, SwaV [Caron et al., 2020] passes the minibatch examples through the model’s encoder
and clusters output vectors to generate pseudo-labels for a prediction task. In teacher-student
architectures such as BYOL [Grill et al., 2020] and DINO [Caron et al., 2021], the minibatch is
passed through two networks, where the “student” network is updated via backpropagation and the
“teacher” network is updated by cloning the student’s weights in regular intervals. In CLIP [Radford
et al., 2021], a model optimizes the sum of two cross-entropy losses, where the predicted class
probabilities on example i are generated by comparison to all other elements of the minibatch. While
introducing such interventions into the procedure has clearly proven useful practically, it remains
conceptually unclear what exactly is being optimized by the learning algorithm.

In this work, we aim to gain a better theoretical understanding of the objectives and algorithms
underlying these empirically effective recipes. In particular, we want to shed a theoretical light on
their precise benefits over traditional learning methods. We show that such recipes often enjoy an
unsuspected benefit: reducing the variance of the empirical minibatch objective.

Concretely, we formalize the model updates described above as two phrases. Let Z1, . . . , Zn be a
minibatch containing data points of arbitrary type (e.g. unlabeled images). In the first phase, this
original data source is mapped (possibly using a model parameterized by θ) to another minibatch
(X1, Y1), . . . , (Xn, Yn) of derived pairs in X × Y . For example, in SwaV, each Zi is an image,
and we derive (Xi, Yi) by setting Xi = Zi and letting Yi be the pseudo-label based on clustering
the vector representations of the images. In CLIP, each Zi is an image-caption pair, and we derive
(Xi, Yi) by simply letting Xi be the image and Yi be the caption. Note that Yi is not a label in the
traditional sense in neither of these examples. In the second phase, we use the model to compute a
probability distribution Pn,θ over X × Y , and perform a stochastic gradient update for the objective

EPn,θ
[hθ(X,Y)] . (2)

This reduces to empirical risk minimization on the minibatch objective (1) when Z = (X,Y) (each
data point is originally observed in X × Y) and Pn,θ = Pn (the empirical distribution of the data is
used, regardless of the model). Beyond this setting, one specific example of Pn,θ has been applied
across various families of self-supervised learning (as detailed in Sec. 2), which we refer to as data
balancing or simply balancing, the primary subject of this work.

For a probability measure Q on X × Y , let QX and QY be the respective marginals on X and Y
and let QX|Y and QY |X denote the respective conditional distributions. Given fixed target marginal
distributions PX on X and PY on Y , balancing refers to repeatedly applying the operations

R 7→ argmin
Q:QX=PX

KL(Q∥R) and R 7→ argmin
Q:QX=PY

KL(Q∥R), (3)

in an alternating fashion. After enough iterations, the resulting probability measure approximately
marginalizes to PX and PY in each variable. When X and Y are finite with |X | = m and |Y| = l,
these operations reduce to rescaling the rows of an (m × l)-matrix by PX/RX or its columns by
PY /RY . This algorithm has a decades-old history and is known in other contexts as Sinkhorn-Knopp
matrix scaling [Sinkhorn, 1967], iterative proportional or biproportional fitting [Johnston and Pattie,
1993], and raking-ratio estimation [Thompson, 2000]. The marginals PX and PY can represent
auxiliary information or inductive bias from users, such as the desire for balanced clusters.

Returning to Pn,θ in (2), we show in Sec. 2 that both self-labeling and contrastive approaches in SSL
implicitly define Pn,θ by the following steps: 1) constructing a method-specific “initial” measure P (0)

n
on X × Y , then 2) applying k iterations of the operations (3) to generate a sequence P (0)

n , . . . , P (k)
n ,

and finally, 3) setting Pn,θ := P (k)
n . In other words, these methods embed a learnable balancing

operation in their objectives. A natural question to consider is: if the marginals one uses accurately
represent the ones of the true probability measure P governing the data, are balanced quantities
“better behaved” than their unbalanced counterparts? If so, in what way?

Inspired by this question, we fix the model parameter θ (thus dropping the subscript from the
quantities above) and analyze the fluctuations of the unbalanced and balanced objectives. The formal
problem statement is as follows. Let P (0)

n = Pn and P (k)
n denote the output of k ≥ 1 iterations of data

balancing (see Sec. 3 for the precise definition). Finally, letting h : X × Y → R be a fixed function
of interest, we define the population parameter φ and its k-step balanced estimator φ(k)

n by

φ := EP [h(X,Y)] and φ(k)

n := E
P

(k)
n

[h(X,Y)] . (4)

2

Our goal is to establish theoretical guarantees on the mean squared error (MSE) EP [(φ
(k)
n − φ)2] of

estimating φ using φ(k)
n , with an informative dependence on the sample size n, number of iterations k,

target marginals (PX , PY), and test function h. We are particularly interested in its comparison to the
direct estimator based on the empirical measure φ(0)

n = 1
n

∑n
i=1 h(Xi, Yi), as to quantify the effect

of the auxiliary information (PX , PY). Our analysis uncovers two surprising facts. Firstly, while
originally proposed for a different purpose, balancing reduces the variance of the empirical estimate.
Secondly, while the balancing iterations are nonlinear operations on the input measure, the variance
reduction can be precisely quantified using the spectral decay of two linear Markov operators: the
conditional means given X and Y , respectively.

Contributions. In Sec. 2, we detail the mathematical connection between balancing and the modern
representation learning techniques mentioned above. In Sec. 3, we prove a new upper bound on the
MSE of the balancing estimator φ(k)

n . The bound decomposes into an O(n−1) first-order variance term
and an O(k6n−3/2) second-order term. The first-order term is shown to have a strict improvement
over the empirical measure baseline with a fine-grained dependence on the spectra of two particular
Markov operators. The second-order term can be used to compute the asymptotic variance reduction
for statistical efficiency comparisons. Our proof technique relies on a recursion decomposition for
balancing-based estimators, which may be of independent interest. In Sec. 4, we illustrate how
insights from our analysis can be practically applied to CLIP-type objectives and evaluation setups.

2 Data Balancing in Practice

To demonstrate a precise connection to (2), we describe how a collection of training examples
Z1, . . . , Zn observed in an original data space Z (e.g. grayscale images) is mapped to a probability
measure Pn,θ. Using the framework introduced in Sec. 1, this amounts to specifying four components:
1) the map from the original data into the derived sample spaces X and Y , 2) the initial measure P (0)

n ,
3) the function h, and 4) the target marginals (PX , PY) for this measure to fit. From that point, the
iterations of (3) produce P (1)

n , . . . , P (k)
n , and we set Pn,θ := P (k)

n . For ease of presentation, we hide
the dependence of P (k)

n = Pn,θ and h ≡ hθ on the model parameter θ. See Fig. 1 for examples of
different choices of the sample spaces X and Y .

Example 1: Self-Supervised Clustering. Balancing is used in discriminative clustering and self-
supervised clustering; see [Jones et al., 2022, Asano et al., 2020, Caron et al., 2020] for variations
on this theme. We describe the swapped prediction task of Caron et al. [2020] for concreteness but
emphasize that clustering of this form is used as an intermediate step (or as the task itself) in many
SSL pseudo-tasks. At a high level, this approach involves passing elements of a minibatch through
two encoders to generate vector representations. These representations are then clustered separately,
and the features from one encoder predict the cluster label from the other encoders. Denote the
encoders fθs : Z → Rr and fθt : Z → Rr, colloquially known as the student and teacher networks,
respectively. Here, we let {Zi}ni=1 be a minibatch of n images, with

X = {Z1, . . . , Zn} and Y = {1, . . . , l} ,
where m = n and the elements of Y index learnable cluster representation vectors c1, . . . , cl ∈ Rr.
Thus, we consider the overall parameter vector to be θ := (θs, θt, c1, . . . , cl). Given temperature
hyperparameters ϵ, τ > 0, the initial measure and loss function are given by the expressions

P (0)

n (x, y) ∝ efθs (x)
⊤cy/ϵ and h(x, y) = log e

fθt
(x)⊤cy/τ∑l

y′=1
e
fθt

(x)⊤c
y′/τ

.

Directly optimizing
∑

x,y P
(0)
n (x, y)h(x, y) without any constraints would lead to collapse, so it is

balanced before optimization. The target marginals PX and PY are given by the discrete uniform
measures on X and Y . This formulation is often derived by solving an optimal transport problem
with the Sinkhorn-Knopp algorithm to assign soft cluster labels, the iterative solution result from this
procedure is precisely P (k)

n . The intuition behind the choice of uniform marginal PX is that each data
point has an equal amount of mass to be allotted, whereas PY captures that the cluster sizes are equal.
The number of iterations k is selected based on optimization considerations.

Example 2: Contrastive Learning. Contrastive Language-Image Pre-Training [Radford et al.,
2021], or CLIP, is an architecture with an image encoder and a text encoder that map to a joint

3

Figure 1: Data Balancing Examples: Each panel shows a possible distribution Q on different
choices of (X ,Y). The orange histograms are the target marginal PY . Left: Q(x, y) is the affinity of
an image x for cluster y. Center: Q(x, y) is the similarity of an image x to a text caption y. Right:
Q(x, y) is the proportion of substring matches between a text caption x and a keyword y.

embedding space. Trained using image-caption pairs, the loss promotes representations such that
images and text that are paired in the minibatch are close, whereas those that are not paired are
far. The latter aspect (promoting dissimilarity of unpaired images/text) is what prevents collapse
in this framework. To our knowledge, our interpretation of the CLIP objective as an implicit data
balancing procedure is novel. Under this interpretation, we demonstrate that the objective is in fact a
nonlinear function of Pn,θ, whereas its gradient will have a linear form similar to (2). In this case,
each Zi = (Xi, Yi), where Xi is an image and Yi is an associated caption. We have that

X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} ,
so that m = n. Consider an image encoder fθI : X 7→ Rr and text encoder fθT : Y 7→ Rr with
parameter vector θ = (θI , θT). The initial, unnormalized measure and the (in this case, vector-valued)
function h are chosen based on these encoded representations:

P (0)

n (x, y) ∝ efθI (x)
⊤fθT (y) and h(x, y) = ∇θ(fθI (x)

⊤fθT (y)). (5)
While we usually interpret h as a loss function, we will show below that the CLIP loss depends
nonlinearly on Pn,θ, while the gradient has a linear dependence. If we believe, as in Example 1, that
the target marginals (PX , PY) of the images and the text should be roughly uniform, we can apply
the balancing iterations (3) with the target marginals being the uniform distributions over X and Y ,
respectively. Because there is no preference for starting the iterations with the X or Y dimension
first, we may consider both orderings. Let Q(1)

n be one iteration of balancing in the Y dimension and
R(1)

n represent one such iteration in the X dimension. Then the original CLIP objective LCLIP
n can be

recovered (up to an additive constant) as

LCLIP
n := −1

2

n∑
i=1

[
log

P (0)
n (Xi, Yi)∑
x P

(0)
n (x, Yi)

+ log
P (0)
n (Xi, Yi)∑
y P

(0)
n (Xi, y)

]

= −1

2

n∑
i=1

[logQ(1)

n (Xi, Yi) + logR(1)

n (Xi, Yi)]− log n. (6)

The measure Pn,θ = 1
2Q

(1)
n + 1

2R
(1)
n is constructed in this case by averaging the outputs of one iteration

of balancing under each modality. Taking the gradient of (6) with respect to θ (whose dependence is
contained in (Q(1)

n , R(1)
n)) recovers the expression for h in (5). The objective is often interpreted as an

average of cross-entropy loss terms, each representing the prediction of one modality’s original pair
from the other. In our formulation, LCLIP

n can also be viewed as an average negative log-likelihood
under the Q(1)

n and R(1)
n . It is also of interest to study the effect of using Q(k)

n and R(k)
n for k ≥ 0 in

general, as we show in Sec. 4.

4

Example 3: Metadata Curation. Here, we consider balancing an entire training set, as opposed
to a particular minibatch. At the billion-parameter scale, dataset design can be the primary factor
that differentiates performance between foundation models [Fang et al., 2013, Xu et al., 2024, Gadre
et al., 2023]. One general approach used in both the original CLIP dataset [Radford et al., 2021] and
an open-source replication [Xu et al., 2024] is metadata curation, wherein a text dataset (possibly
captions for images) is synthesized using a list of keywords {y1, . . . , yl} so that

X = {Z1, . . . , Zn} , Y = {y1, . . . , yl} ,

meaning that m = n. The keywords are matched to texts within X via substring matching. While
the approach of Xu et al. [2024] (dubbed MetaCLIP) pools all matched keywords on every text to
measure the “distribution” of keywords, we consider a version in which each text Zi can only be
labeled with a single keyword yj . This allows for a true joint probability measure on X × Y . The
marginal distribution of observed keywords is initially long-tailed (see Fig. 4) (e.g., “the” will match
many more texts than “xylophone”). In both Radford et al. [2021] and Xu et al. [2024], the data are
resampled so that this distribution of keywords over matches is closer to uniformity, i.e. keywords
with many matches have their associated texts downsampled during the dataset creation process.
While the probability measure may not be computed explicitly (due to scale), this adjustment of the
keyword distribution can be viewed as a single iteration of balancing (3) applied to the Y marginal.
For tasks such as language modeling, we have

P (0)

n (x, y) = Pn(x, y) and h(x, y) = ℓθ(x), (7)

where ℓθ(x) denotes the loss of a model evaluated at a single text x ∈ X (notice that the keyword is
not used). We elucidate this connection by applying direct balancing on a subset of the ImageNet-
Captions dataset in Sec. 4, observing the effect on downstream model performance.

Motivated by these scenarios, we address the statistical problem outlined in Sec. 1 by analyzing
balancing-based estimators. We then return to examples mentioned above in Sec. 4, illustrating how
the theoretical analysis can be translated to algorithmic variants.

3 Theoretical Analysis of Variance Reduction

We now present theoretical guarantees on the mean squared error (MSE) of the data-balanced
estimator φ(k)

n and highlight relevant points in the proofs. For readers’ convenience, a notation table
(Tab. 1) is in Appx. A. We first give context on the main innovations of the analysis and then outline
its high-level steps. These innovations include relating the nonlinear iterations of balancing over
probability measures to linear operators on a vector space and using a singular value decomposition
of these operators to quantify their effect after a finite number of iterations. Furthermore, by scaling
the number of iterations appropriately, we can characterize the estimator using the limit of balancing
iterations, which is an object of interest in applications including optimal transport.

Preliminaries. Recall the setting introduced in Sec. 1, in which we consider sample spaces (X ,Y),
along with true and unknown joint distribution P on X × Y with known marginals (PX , PY). For
ease of presentation, we assume that |X | = |Y| = m, although the arguments do not rely on equal
support sizes. We make the following assumption throughout, which is usually satisfied by the
desired marginals PX and PY , such as in the uniform cases discussed in Sec. 2: the target marginals
PX(x) > 0 and PY (y) > 0 for all x ∈ X and y ∈ Y . We define P (0)

n = Pn as the empirical measure
and for k ≥ 1 construct

P (k)

n (x, y) :=

PX(x)

P
(k−1)
n,X (x)

· P (k−1)
n (x, y) k odd

PY (y)

P
(k−1)
n,Y (y)

· P (k−1)
n (x, y) k even

. (8)

By direct computation, we see that the iterations in (8) are equivalent to applying (3) for k odd
and even, respectively. See Fig. 2 (left) for a visualization of this procedure. The iterations are
well-defined for all k under the event that Supp(Pn,X) = Supp(PX) and Supp(Pn,Y) = Supp(PY),
i.e., all observed row counts and column counts are non-empty.2

2Due to this technical consideration, we define P (k)
n to be the empirical measure Pn when this condition is

not satisfied, which we show occurs with low-probability. See Appx. D.4 for details.

5

Figure 2: Data Balancing. Nonlinear and linear operators associated with each iteration of (8). Left:
Visualization of the exact iterations of (8) in the space of probability measures. The blue set contains
joint distributions with X -marginal equal to PX , whereas the orange set contains joint distributions
with Y-marginal equal to PY . Right: Visualization of L2(P), the operators defining (11), and the
singular values given in (13).

To provide background, the scheme of alternating the operators (8) is often seen as an iterative
algorithm to solve the problem

min
Q∈Π(PX ,PY)

KL(Q∥P (0)

n), (9)

where Π(PX , PY) denotes the set of probability measures on X × Y that marginalize to PX and PY

in each variable and KL(·∥·) denotes the Kullback-Leibler divergence. The iterations (8) are based
on the alternating minimization approach of solving

P (k)

n (x, y) :=

{
argmin{Q:QX=PX} KL(Q∥P (k−1)

n) k odd
argmin{Q:QY =PY } KL(Q∥P (k−1)

n) k even
,

which inspires the viewpoint of balancing as alternating information projections. As we show in
Appx. C, the iterations of (8) can equivalently be defined using the KL, reverse KL, or χ2-divergences.
This viewpoint is relevant as previously, efforts have been made (e.g. in Bickel et al. [1991]) to
analyze the variance reduction afforded by the solution to (9) directly. However, quantifying the
variance reduction (in terms of properties of P) using this approach is challenging, as there is no
closed-form expression for the solution of (9). A key mathematical outcome of our analysis is that
the closed-form expressions of the projections (8) can be used to compute the reduction in mean
squared error at each iteration. Thus, by letting k ≡ k(n) → ∞ (scaled appropriately against n), we
can determine the reduction for the solution of (9) for large n. This is the subject of Thm. 1.

From Information Projections to Orthogonal Projections. First, we will show that the variance
reduction resulting from each nonlinear iteration of (8) is associated with a linear operator applied to
h. Thus, instead of analyzing the alternating information projections over probability measures, we
may use familiar tools to understand alternating orthogonal projections in a vector space. To define
them, we first let L2(P) to be the set of functions h : X × Y → R satisfying EP

[
h2(X,Y)

]
< ∞.

Even though X × Y is finite, working within L2(P) will be analytically convenient. Let L2(PX)
be the subspace of L2(P) containing functions that only depend on the first argument x ∈ X
and define L2(PY) analogously. These are the solid-colored subspaces in Fig. 2 (right). Next, let
µX : L2(P) → L2(PX) and µY : L2(P) → L2(PY) be defined as, for any h ∈ L2(P),

µXh = argmin
f∈L2(PX)

EP

[
(h(X,Y)− f(X))2

]
=⇒ [µXh](x, y) := EP [h(X,Y)|X] (x)

The operator µX is an orthogonal projection onto L2(PX). The orthogonal projection operator
µY onto L2(PY) is defined analogously. We may also define the conditional debiasing operators
CX = I−µX and CY = I−µY , which each project onto the orthogonal complements of L2(PX) and

6

L2(PY), visualized as subspaces with dotted border in Fig. 2 (right). To understand the importance
of the conditional mean and debiasing operators, we give a recursive formula that forms the backbone
of our analysis. Define µk = µX for k odd and µk = µY for k even, and define Ck similarly. Thus,
by using the notation Q(h) := EQ[h(X,Y)], we have by linearity of expectation that

[P (k)

n − P](h) = [P (k)

n − P](Ckh) +
=0︷ ︸︸ ︷

[P (k)

n − P](µkh)

= [P (k−1)

n − P](Ckh) + [P (k)

n − P (k−1)

n](Ckh)

= [P (0)

n − P](C1 . . . Ckh)︸ ︷︷ ︸
first-order term

+
∑k

ℓ=1[P
(ℓ)
n − P (ℓ−1)

n](Cℓ . . . Ckh)︸ ︷︷ ︸
higher-order terms

. (10)

To justify the first line, we discuss the case when k is odd. Notice that µXh is only a function of X ,
so its expectation only depends on PX that is equal to P (k)

n,X (the X -marginal of P (k)
n) by (8). The last

line follows by unrolling the previous step k − 1 times. This recursive expansion is proven formally
in Prop. 15 in Appx. D. Given the expansion, the mean squared error can be computed by taking the
expectation of squared (10). We show that the second moment of the first-order term in (10) is equal
to σ2

k/n where

σ2
0 := Var(h) and σ2

k := Var(C1 . . . Ckh) for k ≥ 1, (11)

and all other terms are O(k6n−3/2). Thus, by exactly computing the constant in the dominating term,
we may quantify the asymptotic variance reduction. Our first main result concerns the higher-order
terms and shows that it is indeed dominated by the first-order term. Note that the empirical mean
φ(0)
n = 1

n

∑n
i=1 h(Xi, Yi) is unbiased, and so its MSE is equal to σ2

0/n. Define in addition

p⋆ := min{min
x

PX(x),min
y

PY (y)}

which measures the non-uniformity of the target marginals. We have that p⋆ is positive because both
PX and PY are positive. We now state the first main result.

Theorem 1. For a sequence of data balancing estimators (φ(k)
n)k≥1 as defined in (4), there exists an

absolute constant C > 0 and distribution dependent constant s ∈ [0, 1) and such the following holds
for σ2

gap = σ2
0 − σ2

k: For n ≥ C[log2(2n/p⋆) +m log (n+ 1)]/p2⋆ and k ≥ 1, we have

EP

[
(φ(k)

n − φ)2
]
≤

σ2
0 − σ2

gap

n
+O

(
sk

n

)
+ Õ

(
k6

n3/2

)
. (12)

The quantities σ2
gap and s are quantified toward the end of this section and are dependent on eigende-

cays of the conditional mean operators for each variable under P . Furthermore, σ2
gap > 0 except for

the pathological case of µXh being a constant function. Showing Thm. 1 boils down to showing that
the higher-order term in (10) is O(n−1) with high probability. Using the expression (8) and assuming
that ℓ ≥ 1 is odd, we see that

[P (ℓ)

n − P (ℓ−1)

n](Cℓ . . . Ckh) =
∑
x,y

[
PX(x)

P (ℓ−1)

n,X (x)
− 1

]
· [Cℓ . . . Ckh](x, y)P (ℓ−1)

n (x, y).

The first (blue) term in the product quantifies the disagreement between the X -marginal of P (ℓ−1)
n and

the true marginal, which can be bounded in terms of KL(P (0)

n,X∥PX) and is shown to be O(n−1/2)
with high probability via techniques from information theory. The second (orange) term can be
unrolled recursively in a similar fashion to (10) itself, which will consequently be O(n−1/2) as well;
this is the most technical part of the analysis (see Appx. D.3). Our analysis also yields a bound for
the sensitivity of balancing to misspecified marginals; see Appx. D.5.

Given Thm. 1, a natural next step is to quantify the gap between σ2
0 and σ2

k, which requires finer-
grained properties of CX and CY . Notably, we show that as k → ∞, σ2

k approaches a limiting
value. Thus, via (12), by using k = o(n1/12) obtains asymptotic variance of the solution to (9). This
contrasts with Albertus and Berthet [2019], in which the dependence of a quantity similar to (12) is
exponential in k, meaning that k = o(log(n)) is required for convergence under this argument.

7

From Orthogonal Projections to Variance Reduction. We now clarify what is precisely meant
by the “spectrum” of the conditional mean operators µX and µY . As proven using a singular value
decomposition (Prop. 3) in Appx. B.1, there exists a basis {αj}mj=1 of L2(PX), a basis {βj}mj=1 of
L2(PY), and real values {sj}mj=1, that satisfy

µY αj = sjβj and µXβj = sjαj for j ∈ {1, . . . ,m} . (13)

Furthermore, α1 = 1X and β1 = 1Y leading to the equality ⟨f, α1⟩L2(PX) = EPX
[f(X)]. Finally,

s1 = 1 and sj is non-negative and non-increasing in j. For a concrete example, consider m = 2, in
which case P can be written as a matrix in R2×2 and elements of L2(PX) and L2(PX) are vectors in
R2. Then, in the case of uniform marginals, we can verify directly that (13) can be satisfied by setting

α1 = β1 =

[
1
1

]
, α2 = β2 =

[
1
−1

]
, and P =

1

4

[
1 + s 1− s
1− s 1 + s

]
(14)

for s = s2 (the second largest singular value). Thus, as s → 1, the distribution becomes “fully
dependent” as Y and X are completely determined by one another. As s → 0, P approaches the
product measure. Geometrically, because α1 = β1, we know that the angle a between the subspaces
L2(PX) and L2(PY) is given by the angle between α2 and β2. By computing their inner product in
L2(P), we have that ⟨α2, β2⟩L2(P) =

〈
P, α2β

⊤
2

〉
= s = cos a. Thus, s = 0 indicates orthogonality

of these subspaces, alluding to the independence of X and Y (see the right panel of Fig. 2).

Returning to m ≥ 2, we consider the following as a sufficient condition for variance reduction: the
operators µX and µY have a positive spectral gap, i.e., s2 < s1. Note that this assumption is satisfied
when P (x, y) > 0 for all (x, y) ∈ X × Y by the Perron–Frobenius Theorem [Horn and Johnson,
2013, Chapter 8]. Using the intuition from Fig. 2, this rules out pathological cases such as Y being
a deterministic function of X . Under the spectral gap condition, the singular values {sj}mj=2 that
are strictly less than 1 will determine a geometric rate of decay in variance given in Cor. 2. The left
and right singular functions αj : X → R and βj : Y → R will define a useful coordinate system to
represent projections of h when analyzing φ(k)

n .

Indeed, let h̄ = P (h) be the centered test function. Because µX h̄ ∈ L2(PX) and µY h̄ ∈ L2(PY) ,
we may decompose this function on the two bases to write

µX h̄ =

m∑
j=1

ujαj and µY h̄ =

m∑
j=1

vjβj . (15)

Cor. 2 below relates the (normalized) variance σ2
k of the first-order term to the one of the sample

mean φ(0)
n . In fact, it shows that the variance reduction σ2

0 − σ2
k decays geometrically to the quantity

σ2
gap :=

m∑
j=2

[
u2
j +

(vj − sjuj)
2

1− s2j

]
.

For simplicity, we only present the result for k even, i.e., σ2
2t.

Corollary 2. The variance reduction achieved by t + 1 iterations of the CY CX operator can be
quantified as

σ2
0 − σ2

2(t+1) = σ2
gap −

m∑
j=2

s2j (vj − sjuj)
2

1− s2j
s4tj =

m∑
j=2

[
u2
j + (1− s4t+2

j)
(vj − sjuj)

2

1− s2j

]
.

Intuitively, the operators CX and CY are the main sources of the variance reduction via orthogonality.
Since α1 = 1X , we can see that the reduction will always be strictly positive as long as µX h̄ is not a
constant function. Finally, using s := s2 ≥ sj for j ≥ 2 gives the second term in Thm. 1.

4 Numerical Illustrations

We illustrate how data balancing manifests in the motivating examples mentioned in Sec. 2 with
experiments with CLIP-type models. We focus here on zero-shot image classification tasks. Details
on these experiments, and additional ones including linear probing and zero-shot retrieval, as well as
an empirical investigation of the sensitivity to misspecified marginals, are all contained in Appx. E.
Code to reproduce the data and experiments can be found at https://github.com/ronakdm/balancing.

8

https://github.com/ronakdm/balancing

0.2

0.4

0.6

0.8

C
IF

AR
-1

0

m = 128

0.2

0.4

0.6

0.8

m = 512

0.2

0.4

0.6

0.8
m = 128

0.2

0.4

0.6

0.8
m = 512

0.10

0.15

0.20

0.25

0.30
m = 128

0.1

0.2

0.3

m = 512

0.0

0.2

0.4

C
IF

AR
-1

00

0.2

0.4

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.01

0.02

0.03

0.01

0.02

0.03

0.04

0.05

Iterations
0.2

0.4

0.6

0.8

ST
L-

10

Iterations

0.4

0.6

0.8

Iterations

0.2

0.4

0.6

0.8

Iterations

0.2

0.4

0.6

0.8

Iterations
0.1

0.2

0.3

Iterations
0.1

0.2

0.3

CLIP Text Embeddings BERT Text Embeddings GPT-2 Text Embeddings

No Balancing CLIP Balancing (k = 1) Multi-CLIP (k = 2)

Figure 3: Zero-Shot Classification Performance across Embeddings, Batch Sizes, and Objectives.
The three vertical panels describe different choices of the text encoder fθT which increases in quality
from left to right; that is, pre-trained GPT-2, BERT, and CLIP embeddings, respectively. Within
each vertical panel, examples include batch sizes m = 128 and m = 512. Rows indicate various
evaluation datasets from CIFAR-10, CIFAR-100, and STL-10. The y-axis of each plot indicates
average per-class recall, whereas the x-axis indicates training iterations at the given batch size.

Model, Datasets, and Evaluation. Throughout, we consider training variants of CLIP models (see
Sec. 2), which require a dataset of image-caption pairs. For the training set, we use the ImageNet-
Captions dataset [Fang et al., 2013], which pairs images from ImageNet [Deng et al., 2009] that
were taken from Flickr with their original captions. In the notation of Sec. 2, the model is specified
by selecting an image encoder fθI and a text encoder fθT . In all cases, we use a fixed image/text
encoder as a base vector representation and compose it with a trainable feed-forward neural network,
i.e., fθ = f head

θ ◦ f base. We fix the base image encoder as CLIP ViT-B/32 architecture pre-trained on
LAION-2B [Schuhmann et al., 2022], and vary the base text encoder across embedding models of
varying quality: GPT-2 [Radford et al., 2019], BERT [Devlin et al., 2019], and CLIP-based encodings.
When two CLIP encoders are used for the base image/text vector representation, they are taken from
separate CLIP models (i.e. the base representations are not dependent). We evaluate models based on
zero-shot classification performance using the standard CLIP inference procedure: for any image
x, a label c ∈ {1, . . . , C} is predicted by associating to each c a natural language prompt yc, and
predicting the scores s(x) = (s1(x), . . . , sC(x)), with

sc(x) =
e⟨fθI (x),fθT (yc)⟩/τ∑C

c′=1 e
⟨fθI (x),fθT (yc′)⟩/τ

(16)

for a temperature τ > 0. Multiple prompting strategies can be used depending on the evaluation
dataset, for which we average embeddings before applying (16). We use the public CLIP Benchmark
repository, using the datasets CIFAR-10, CIFAR-100, STL-10, with their default caption sets.

Data Balancing Effects. Fig. 3 shows the zero-shot classification performance (in terms of average
per-class recall) of variants depending on whether the contrastive learning objective from Sec. 2
is used or not. One iteration of balancing already leads to improvement in terms of downstream
performance. Multiple balancing iterations lead to further improvements. See Appx. E for more
details on this experiment, and for analogous ones with linear probing and zero-shot retrieval.

Fig. 4 then shows how balancing can be used to adjust an entire pre-training set to given marginals
based on metadata, as described in Sec. 2 in the metadata curation example. After balancing, the
target marginal has less than 2 orders of difference. In terms of downstream performance, data
balancing leads to some improvement in the smaller batch regime (m = 512) when curating the
dataset. See Appx. E for more details on this experiment.

9

https://github.com/LAION-AI/CLIP_benchmark

Histogram of Metadata Categories in Pre-Training Dataset Zero-Shot Accuracy of Models with Different Pre-Training Data
Evaluated on CIFAR-100 Evaluated on STL-10Original Data Rebalanced Data

Training Iterations Training IterationsMetadata Category Meatadata Category

Figure 4: Balancing and Metadata Curation. Depiction of balancing and metadata curation
(Example 3 in Sec. 2) on ImageNet-Captions dataset, in which X represents image-caption pairs and
Y represents keywords. Left: Observed marginal Pn,Y (orange) and PY (blue), which are sorted by
order of increasing probability. Right: Zero-shot evaluation of an embedding model trained using the
standard CLIP loss original versus the balanced training set.

Related Work Self-supervised learning has witnessed a surge of recent interest as datasets and
computing hardware allow for larger, more capable models (see Balestriero et al. [2023] and references
therein). While we highlight in this paper the connections between data balancing and contrastive
learning [Radford et al., 2021], we acknowledge that data balancing can also be related to ”self-
distillation” approaches more broadly [Grill et al., 2020, Chen and He, 2021, Oquab et al., 2024].

Historical motivations for data balancing include census or survey data, in which Pn is a cross-
tabulation of (a limited number of) paired observations and the target marginals were estimated
from large amounts of unpaired observations [Deming and Stephan, 1940, Ireland and Kullback,
1968]. This situation is not unlike the present day—yet at a different scale—in which the amount of
unstructured single-modality data (such as images) still dwarfs the amount of high-quality multimodal
data [Gadre et al., 2023]. Bickel et al. [1991] proved classical asymptotic results on balancing
estimators. Linear operators similar to the ones we use in Sec. 3 also appear in their analysis. More
recently, Albertus and Berthet [2019] studied such estimators from an asymptotic empirical process
viewpoint. Our theoretical results significantly improve on those from Albertus and Berthet [2019]
primarily in the dependence of the number of iterations k on the sample size n to achieve convergence
guarantees (from logarithmic to polynomial).

Matrix scaling is a popular algorithm for solving entropy-regularized optimal transport (EOT). We
refer to Peyré and Cuturi [2019] for a survey. See also Courty et al. [2017], Shen et al. [2018], Peng
et al. [2019] for interesting methods based on EOT in machine learning. Entropy-regularized optimal
transport was one of the original inspirations for SSL techniques such as SwaV (see Sec. 2). While
EOT is itself a deterministic optimization problem, a related statistical problem is the large-sample
limits of EOT solutions when the marginal measures are estimated from data [Mena and Niles-Weed,
2019, Genevay et al., 2019, Klatt et al., 2020]. We emphasize that, while this line of work shares the
matrix scaling algorithm with our setting, the statistical problem is entirely distinct; in statistical EOT,
the target marginal distributions are computed from observations of independent, unpaired data, and
the initial measure can be computed from the cost function. In our setting, the data are dependent,
forming the random initial measure Pn, whereas PX and PY are fixed auxiliary information.

5 Conclusion

We showed how several disparate techniques used towards the training of foundation models are
instances of a data balancing algorithm, which has the unsuspected benefit of reducing the variance
of learning objectives involving multiple sources of data. We proved a new non-asymptotic bound
on the mean-squared error of balanced estimators as they adjust to the given marginals. We also
highlight the key roles of conditional expectation operators in quantifying that variance reduction
effect. Finally, we translated the marginal balancing interpretation of several training practices for
foundation models into algorithmic variants that warrant further investigation. Exploring variants
incorporating prior information on the data sources is also an interesting venue for future work.

10

Acknowledgements The authors are grateful to G. Ilharco, M. Wortsman, K. Pillutla, L. Schmidt,
and J. Wellner for fruitful discussions related to this work. This work was supported by NSF
DMS-2023166, CCF-2019844, DMS-2134012, PIMS 20240827-PRN01, NIH, and IARPA 2022-
22072200003. Part of this work was done while L. Liu was with the University of Washington, and
while R. Mehta and Z. Harchaoui were visiting the Simons Institute for the Theory of Computing.

Broader Impact While this paper is of a theoretical nature, the web-scale pre-training sets used to
train foundation models can affect not only the biases of the models themselves but also the behavior
of individuals who interact with them. In the case of representation learning, unrefined Internet
data may lead to non-uniform performance among protected attributes such as gender, age, etc. For
generative models, individuals of all ages may be influenced by harmful images or textual output.
Studying the relationship between the balancing procedures considered in this paper and more holistic
model evaluations presents a valuable direction for follow-up work.

References
M. Albertus and P. Berthet. Auxiliary information: The raking-ratio empirical process. Electronic

Journal of Statistics, 13(1), 2019.

Y. Asano, C. Rupprecht, and A. Vedaldi. Self-labelling via simultaneous clustering and representation
learning. In ICLR, 2020.

R. Balestriero, M. Ibrahim, V. Sobal, A. Morcos, S. Shekhar, T. Goldstein, F. Bordes, A. Bardes,
G. Mialon, Y. Tian, A. Schwarzschild, A. G. Wilson, J. Geiping, Q. Garrido, P. Fernandez, A. Bar,
H. Pirsiavash, Y. LeCun, and M. Goldblum. A cookbook of self-supervised learning. arXiv
preprint, 2023.

P. J. Bickel, Y. Ritov, and J. A. Wellner. Efficient estimation of linear functionals of a probability
measure P with known marginal distributions. The Annals of Statistics, 1991.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning of
visual features by contrasting cluster assignments. In NeurIPS, 2020.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In ICCV, 2021.

X. Chen and K. He. Exploring simple Siamese representation learning. In CVPR, 2021.

N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy. Joint distribution optimal transportation
for domain adaptation. In NeurIPS, 2017.

T. M. Cover. Elements of Information Theory. John Wiley & Sons, 1999.

W. E. Deming and F. F. Stephan. On a least squares adjustment of a sampled frequency table when
the expected marginal totals are known. Annals of Mathematical Statistics, 11, 1940.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In ACL, 2019.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual
Object Classes Challenge 2007 (VOC2007) Results, 2007.

A. Fang, G. Ilharco, M. Wortsman, Y. Wan, V. Shankar, A. Dave, and L. Schmidt. Data determines
distributional robustness in contrastive language-image pre-training (CLIP). In ICML, 2013.

S. Y. Gadre, G. Ilharco, A. Fang, J. Hayase, G. Smyrnis, T. Nguyen, R. Marten, M. Wortsman,
D. Ghosh, J. Zhang, E. Orgad, R. Entezari, G. Daras, S. M. Pratt, V. Ramanujan, Y. Bitton,
K. Marathe, S. Mussmann, R. Vencu, M. Cherti, R. Krishna, P. W. Koh, O. Saukh, A. Ratner,
S. Song, H. Hajishirzi, A. Farhadi, R. Beaumont, S. Oh, A. Dimakis, J. Jitsev, Y. Carmon,
V. Shankar, and L. Schmidt. DataComp: In search of the next generation of multimodal datasets.
In NeurIPS, 2023.

11

A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré. Sample complexity of Sinkhorn divergences.
In AISTATS, 2019.

I. Gohberg, S. Goldberg, and M. Kaashoek. Classes of Linear Operators Vol. 1. Springer, 1990.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires,
Z. Guo, M. Gheshlaghi Azar, B. Piot, k. kavukcuoglu, R. Munos, and M. Valko. Bootstrap your
own latent: A new approach to self-supervised learning. In NeurIPS, 2020.

M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data,
models and evaluation metrics. Journal of Artificial Intelligence Research, 2013.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2013.

C. T. Ireland and S. Kullback. Contingency tables with given marginals. Biometrika, 1968.

R. J. Johnston and C. J. Pattie. Entropy-maximizing and the iterative proportional fitting procedure.
The Professional Geographer, 45, 1993.

C. Jones, V. Roulet, and Z. Harchaoui. Discriminative clustering with representation learning with
any ratio of labeled to unlabeled data. Statistics and Computing, 2022.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

M. Klatt, C. Tameling, and A. Munk. Empirical regularized optimal transport: Statistical theory and
applications. SIAM Journal on Mathematics of Data Science, 2020.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L.
Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context, 2015.

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-Grained Visual Classification of
Aircraft. Technical report, University of Oxford, 2013.

G. Mena and J. Niles-Weed. Statistical bounds for entropic optimal transport: Sample complexity
and the central limit theorem. In NeurIPS, 2019.

M. Nutz. Introduction to Entropic Optimal Transport. Lecture notes, Columbia University, 2021.

M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. HAZIZA,
F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li,
I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin,
and P. Bojanowski. DINOv2: Learning robust visual features without supervision. Transactions
on Machine Learning Research, 2024.

X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang. Moment matching for multi-source
domain adaptation. In ICCV, 2019.

G. Peyré and M. Cuturi. Computational Optimal Transport: With Applications to Data Science.
Foundations and Trends in Machine Learning, 11, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised
multitask learners, 2019.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In ICML,
2021.

C. Schuhmann, R. Beaumont, R. Vencu, C. W. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. R. Kundurthy, K. Crowson, L. Schmidt,
R. Kaczmarczyk, and J. Jitsev. LAION-5B: An open large-scale dataset for training next generation
image-text models. In NeurIPS, 2022.

J. Shen, Y. Qu, W. Zhang, and Y. Yu. Wasserstein distance guided representation learning for domain
adaptation. In AAAI, 2018.

12

R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. American
Mathematical Monthly, 74(4), 1967.

M. E. Thompson. Theory of Sample Surveys. Chapman & Hall, 2000.

H. Xu, S. Xie, X. Tan, P.-Y. Huang, R. Howes, V. Sharma, S.-W. Li, G. Ghosh, L. Zettlemoyer, and
C. Feichtenhofer. Demystifying CLIP data. In ICLR, 2024.

13

Appendix

Table of Contents
A Notation 15

B Linear Operators and Variance Reduction 15
B.1 Singular Value Decomposition . 15
B.2 Proof of Main Results . 16

C From Information Projections to Data Balancing 19
C.1 Balancing as Information Projections . 19
C.2 Proof of Main Results . 22

D Statistical Analysis of Balancing Estimators 24
D.1 Recursion of Estimation Error . 25
D.2 Technical Tools & Intermediate Results . 26
D.3 Analysis of Higher-Order Term . 27
D.4 Proof of Main Results . 29
D.5 Misspecified Marginal Distributions . 35

E Experimental Details 44
E.1 Datasets . 44
E.2 Model Specification and Hyperparameters . 44
E.3 Compute Environment . 44
E.4 CLIP and Multi-CLIP . 45
E.5 Metadata Curation . 45
E.6 Additional Experiments . 45

F NeurIPS Paper Checklist 50

14

A Notation

Symbol Description

X , Y Sample spaces for two data sources.

m, l
Support sizes m = |X | and l = |Y|.

We sometimes assume m = l for ease of presentation.

P Probability measure on X × Y (the data-generating distribution).

n Sample size.

(X1, Y1), . . . , (Xn, Yn) Independent and identically distributed sample from P .

Pn Empirical measure of {(Xi, Yi)}ni=1.

QX , QY Marginals of measure Q on X × Y , e.g. RX , PY , Pn,X , etc.

Supp(Q) For measure Q over Z , the set of values z ∈ Z such that Q(z) > 0.

Q(h) The expected value of h under Q, or EQ [h(X,Y)].

(P (k)
n)k≥1 Sequence of iterations of (8).

k Iteration count of (8).

S The event {Supp(Pn,X) = Supp(PX) and Supp(Pn,Y) = Supp(PY)}.

h Test function h : X × Y → R of interest.

φ The estimand
∑

x,y h(x, y)P (x, y).

φ(k)
n The estimator

∑
x,y h(x, y)P

(k)
n (x, y), when well-defined.

φ̃(k)
n The estimator φ̃(k)

n := φ(k)
n 1S + φ(0)

n 1Sc .

G(k)
n (h) Normalized error

√
n(φ̃(k)

n − φ).

V (k)
n (h) Remainder defined in Prop. 15.

h̄ Centered function h− EP [h].

σ2
k Variance term EP

[
(C1, . . . Ckh)2

]
.

p⋆ min{minx PX(x),miny PY (y)}.

L2(P) Functions h : X × Y → R (as X × Y is finite).

L2(PX),L2(PY) Subspaces of L2(P) containing functions only of x ∈ X and y ∈ Y , respectively.

µX , µY
Conditional expectation operators [µXh](x) := EP [h(X,Y)|X] (x)

and [µY h](y) := EP [h(X,Y)|Y] (y).

CX , CY Debiasing/centering operators CX = I − µX and CY = I − µY .

µk, Ck (µX , CX) for k odd and (µY , CY) for k even.

{sj}mj=1 Singular values in Prop. 3.

{αj}mj=1 , {βj}mj=1 Bases for L2(PX) and L2(PY) in Prop. 3.

Table 1: Notation used throughout the paper.

B Linear Operators and Variance Reduction

This section is dedicated to establishing the variance reduction result in Cor. 2 by employing properties
of the Markov operators introduced in Sec. 3. In the first part, we establish Prop. 3, the singular value
decomposition that defines the quantities appearing in Cor. 2. In the second part, we quantify the
difference between σ2

0 and σ2
k for even and odd iterations of k.

B.1 Singular Value Decomposition

Recall the conditional mean operators µX and µY from Sec. 3,

[µXh](x) := E [h(X,Y)|X] (x) and [µY h](y) := E [h(X,Y)|Y] (y),

with the corresponding debiasing (a.k.a. centering) operators defined by CX = I − µX and CY =
I − µY .
Proposition 3. There exists a basis {αj}mj=1 of L2(PX), a basis {βj}mj=1 of L2(PY), and real values
{sj}mj=1, which satisfy:

µY αj = sjβj and µXβj = sjαj for j ∈ {1, . . . ,m} , (17)

α1 = 1X , β1 = 1Y , s1 = 1 and sj is non-negative and non-increasing in j.

15

Proof. When µX is restricted to L2(PY) and µY is restricted to L2(PX), these operators are in fact
adjoint in L2(P), as by the tower property we have the relation

⟨f, µXg⟩L2(PX) = E [f(X)E [g(Y)|X]] = E [E [f(X)|Y] g(Y)] = ⟨µY f, g⟩L2(PY).

Since µY : L2(PX) → L2(PY) is a compact linear operator, by Gohberg et al. [1990, Section IV.1
Theorem 1.1] and Gohberg et al. [1990, Section IV.1 Corollary 1.2], we have that µY admits a singular
value decomposition satisfying (17). Next, we show that s1 ≤ 1 and that 1X is an eigenvector of
µXµY : L2(PX) → L2(PX) with eigenvalue 1, which confirms that s1 = 1 and α1 = 1X by
the definition of singular values (arguing symmetrically achieves β1 = 1Y). By the variational
representation of singular values [Gohberg et al., 1990, Section IV.1 Equation (2)], we have that

sup
f :∥f∥L2(PX)=1

∥µY f∥L2(PY) = s1.

Consider any f ∈ L2(PX) such that ∥f∥L2(PX) = 1. Define the conditional probability
PX|Y (x|y) = P (x, y)/PY (y) which is well-defined by assumption. Then, by the Cauchy-Schwarz
inequality in L2(PX|Y),

∥µY f∥2L2(PY) =
∑
y∈Y

(∑
x∈X

f(x)PX|Y (x|y)

)2

PY (y)

≤
∑
y∈Y

∑
x∈X

f2(x)PX|Y (x|y)PY (y)

=
∑
x∈X

f2(x)
∑
y∈Y

P (x, y)

= ∥f∥2L2(PX) = 1.

This proves that s1 ≤ 1. For equality, notice that µXµY 1X = µX 1Y = 1X , completing the
proof.

B.2 Proof of Main Results

From Prop. 3, we establish two bases {αj}mj=1 and {βj}mj=1 of L2(PX) and L2(PY), respectively.
These bases span the range of the operators µX and µY . We will consider the repeated application
of the operator CY CX , a sequence of two centering operations on some function h ∈ L2(P), and
compare

E
[
((CY CX)th̄)2

]
against E

[
h̄2
]

for h̄ = h − EP [h]. We establish the main result by measuring the reduction in variance from a
single application, in terms of the coordinates of the function of interest on each of the two subspaces.
We will then observe how these coordinates change iteration-to-iteration to give the final result.
Lemma 4. For any h ∈ L2(P) such that EP [h] = 0, let

µXh =

m∑
j=1

ujαj and µY h =

m∑
j=1

vjβj .

Then, we have that

E
[
(CY CXh)2

]
= E

[
h2
]
−

m∑
j=2

u2
j −

m∑
j=2

(vj − sjuj)
2.

Proof. By orthogonality, we have that
E
[
(CY CXh)2

]
= E

[
((I − µY)CXh)2

]
= E

[
(CXh)2

]
− 2E [(CXh)(µY CXh)] + E

[
(µY CXh)2

]
= E

[
(CXh)2

]
− 2PY ((µY CXh)2) + PY ((µY CXh)2)

= E
[
(CXh)2

]
− PY ((µY CXh)2)

= E
[
h2
]
− PX((µXh)2)− PY ((µY CXh)2).

16

Because P (h) = 0, it holds by the tower property of conditional expectation that PX(µXh) = 0,
which implies that

u1 = ⟨µXh, α1⟩L2(PX) = 0 =⇒ PX((µXh)2) =

m∑
j=2

u2
j .

For the second term, observe that PX(CXh) = 0, so it holds by the tower property that
PY (µY CXh) = 0, so

PY ((µY CXh)2) =

m∑
j=2

(
⟨µY CXh, βj⟩L2(PY)

)2
.

Next, we compute the term in the square by applying Prop. 3:

⟨µY CXh, βj⟩L2(PY) = ⟨µY h, βj⟩L2(PY) − ⟨µY µXh, βj⟩L2(PY)

= vj −

〈
µY

m∑
k=1

ukαk, βj

〉
L2(PY)

= vj −

〈
m∑

k=1

ukskβk, βj

〉
L2(PY)

= vj − sjuj ,

which completes the proof.

Lem. 4 ensures that we have a reduction on each iteration, with a formula that depends on the
coordinates of the function on each subspace. Because these coordinates change every iteration,
we track them in the next lemma. Define h0 = h̄ and ht+1 = (CY CX)ht, along with the constants
{ut,j}mj=1 and {vt,j}mj=1 given by

µXht =

m∑
j=1

ut,jαj and µY ht =

m∑
j=1

vt,jβj .

We have the following.

Lemma 5. For all t ≥ 0, it holds that

ut+1,j = s2jut,j − sjvt,j ,

vt+1,j = 0.

Proof. Fix any j ∈ [m], and use Prop. 3 to write

ut+1,j = ⟨µXCY CXht, αj⟩L2(PX)

= ⟨µX(I − µX − µY + µY µX)ht, αj⟩L2(PX)

= ⟨µXµY µXht, αj⟩L2(PX) − ⟨µXµY ht, αj⟩L2(PX)

=

〈
µXµY

m∑
k=1

ut,kαk, αj

〉
L2(PX)

−

〈
µX

m∑
k=1

vt,kβk, αj

〉
L2(PX)

= s2jut,j − sjvt,j ,

which proves the first part of the claim. For the second part, note that µY CY = 0, so
⟨µY CY CXht, αj⟩L2(PY) = 0.

Using Lem. 4 and Lem. 5, we can simply accumulate the reduction incurred on every iteration.

17

Proposition 6. Define the constants (uj)
m
j=1 and (vj)

m
j=1 by

µX h̄ =

m∑
j=1

ujαj and µY h̄ =

m∑
j=1

vjβj .

Then, we may quantify the variance reduction achieved by t+ 1 iterations of the CY CX operator as

E
[
h̄2
]
− E

[
((CY CX)t+1h̄)2

]
=

m∑
j=2

{
u2
j + (vj − sjuj)

2

[
1 +

s2j (1− s4tj)

1− s2j

]}

→
m∑
j=2

[
u2
j +

(vj − sjuj)
2

1− s2j

]
as t → ∞.

Proof. Apply Lem. 4 (t+ 1)-times so that

E
[
((CY CX)t+1h̄)2

]
= E

[
h̄2
]
−

m∑
j=2

t∑
τ=0

[
(1 + s2j)u

2
τ,j + v2τ,j − 2sjuτ,jvτ,j

]
= E

[
h̄2
]
−

m∑
j=2

[
v20,j − 2sju0,jv0,j +

t∑
τ=0

(1 + s2j)u
2
τ,j

]

as by Lem. 5, we have that vτ,j = 0 for τ > 0. Next, we unroll the definition of uτ,j so that

uτ,j = s2juτ−1,j − sjvτ−1,j

= s2j (s
2
juτ−2,j − sjvτ−2,j)− sjvτ−1,j

= s2τ−2
j (s2ju0,j − sjv0,j)

for τ > 0, yielding

E
[
h̄2
]
− E

[
((CY CX)t+1h̄)2

]
=

m∑
j=2

[
u2
0,j + (v0,j − sju0,j)

2 + (1 + s2j)(s
2
ju0,j − sjv0,j)

2
t∑

τ=1

(s4j)
τ−1

]

=

m∑
j=2

[
u2
0,j + (v0,j − sju0,j)

2 + (1 + s2j)(s
2
ju0,j − sjv0,j)

2
t−1∑
τ=0

(s4j)
τ

]

=

m∑
j=2

[
u2
0,j + (v0,j − sju0,j)

2 +
s2j (1 + s2j)(v0,j − sju0,j)

2(1− s4tj)

1− s4j

]

=

m∑
j=2

[
u2
0,j + (v0,j − sju0,j)

2 +
s2j (v0,j − sju0,j)

2(1− s4tj)

1− s2j

]
.

Substitute u0,j = uj and v0,j = vj to complete the proof.

We also present the corresponding result for k odd. The proof follows similarly by repeated application
of the operator CY CX . However, the iterations will be compared to σ2

1 = EP

[
(CX h̄)2

]
, as we

consider CX h̄ as the “first” iteration to this process.
Proposition 7. Define the constants (uj)

m
j=1 by

µY CX h̄ =

m∑
j=1

ujβj .

18

Then, we may quantify the variance reduction achieved by t+ 1 iterations of the CXCY operator as

E
[
(CX h̄)2

]
− E

[
((CXCY)t+1CX h̄)2

]
=

m∑
j=2

{
u2
j + (sjuj)

2

[
1 +

s2j (1− s4tj)

1− s2j

]}

→
m∑
j=2

(
1 + s2j
1− s2j

)
u2
j

as t → ∞.

In order to have full monotonicity, we also need that σ2
0 ≥ σ2

1 . This follows by orthogonality, as

σ2
0 = E

[
h̄2
]
= E

[
(CX h̄)2

]
+ E

[
(µX h̄)2

]
= σ2

1 + E
[
(µX h̄)2

]
≥ σ2

1 . (18)

Thus, we can combine Prop. 7 and (18) to fully quantify the relationship between σ2
0 and σ2

k for k
odd.

C From Information Projections to Data Balancing

This section is dedicated to deriving three representations of the balancing procedure as projections
in various statistical divergences, as shown in Fig. 2.

We consider two sets of probability measures denoted by ΠX = {Q : QX = PX} and ΠY =
{Q : QY = PY }. The marginal matching steps are written as projections in terms of a statistical
divergence D (precisely, an f -divergence) in the form

PX

P (k−1)

n,X

⊗ P (k−1)

n = argmin
Q∈ΠX

D(Q∥P (k−1)

n),
PY

P (k−1)

n,Y

⊗R = argmin
Q∈ΠY

D(Q∥P (k−1)

n).

We provide the derivations for three common choices of D: Kullback-Leibler (KL), reverse KL, and
χ2. Using this viewpoint, and simply assuming the positivity of the marginal measures PX and PY ,
we derive an upper bound in Prop. 14 that is constant in k. This is an improvement over the recent
work of Albertus and Berthet [2019], in which they show an upper bound that scales exponentially in
k.

The KL representation will be used in the proof of Prop. 14, which (recalling the sequence (P (k)
n)k≥1

from (8)), controls the error between P (k)

n,Y and PY for k odd and P (k)

n,X and PX for k even.

C.1 Balancing as Information Projections

C.1.1 Projection in KL-Divergence

Proposition 8. Assume that PX ≪ RX and PY ≪ RY , and define

Q⋆ := argmin
Q∈ΠX

KL(Q∥R), P ⋆ := argmin
Q∈ΠY

KL(Q∥R). (19)

Then, it holds that

Q⋆(x, y) =

{
PX(x)RY |X(y|x) if RX(x) > 0

0 if RX(x) = 0
(20)

and

P ⋆(x, y) =

{
PY (y)RX(x|y) if RY (y) > 0

0 if RY (y) = 0
. (21)

19

Proof. In the case that Q(x, y) = 0, we apply the convention that 0 log 0 = 0. Consider the case Q⋆,
the projection of R onto ΠX . Write

KL(Q∥R) =
∑
x∈X

∑
y∈Y

Q(x, y) log
QY |X(y|x)QX(x)

RY |X(y|x)RX(x)

=
∑
x∈X

QX(x)

∑
y∈Y

QY |X(y|x) log QY |X(y|x)QX(x)

RY |X(y|x)RX(x)

=
∑
x∈X

QX(x)

∑
y∈Y

QY |X(y|x) log QY |X(y|x)
RY |X(y|x) +

∑
y∈Y

QY |X(y|x) log QX(x)
RX(x)

=
∑
x∈X

QX(x)

∑
y∈Y

QY |X(y|x) log QY |X(y|x)
RY |X(y|x)

+
∑
x∈X

QX(x) log QX(x)
RX(x)

=
∑
x∈X

QX(x)KL(QY |X(·|x)∥RY |X(·|x)) + KL(QX∥RX)

=
∑
x∈X

PX(x)KL(QY |X(·|x)∥RY |X(·|x)) + KL(PX∥RX),

where the last line is due to the marginal constraint Q ∈ ΠX . For the above to be well defined, we
need that PX ≪ RX so that KL(PX∥RX) < +∞. The above is minimized when QY |X(y|x) =
RY |X(y|x) for all (x, y) ∈ X × Y such that QX(x) = PX(x) > 0. The case of P ⋆ follows
analogously when using that PY ≪ RY .

C.1.2 Projection in Reverse KL-Divergence

Proposition 9. Assume that PY ≪ RX and PY ≪ RY , and define

Q⋆ := argmin
Q∈ΠX

KL(R∥Q), P ⋆ := argmin
Q∈ΠY

KL(R∥Q). (22)

Then, it holds that

Q⋆(x, y) =

{
PX(x)RY |X(y|x) if RX(x) > 0

0 if RX(x) = 0
(23)

and

P ⋆(x, y) =

{
PY (y)RX(x|y) if RY (y) > 0

0 if RY (y) = 0
. (24)

Proof. In the case that R(x, y) = 0, we apply the convention that 0 log 0 = 0. Note that minimizing
KL(R∥Q) over Q is equivalent to minimizing −

∑
x,y R(x, y) logQ(x, y) (i.e. the cross entropy).

Consider the case Q⋆, the projection of R onto ΠX . Because R ≪ Q for KL(R∥Q) < +∞ to hold,
we have that R(x) > 0 =⇒ Q(x) > 0, so that QY |X(y|x) is well-defined. Write

−
∑
x,y

R(x, y) logQ(x, y)

= −
∑
x∈X

RX(x) logQX(x)−
∑
x∈X

R(x)
∑
y∈Y

RY |X(y|x) logQY |X(y|x)

= −
∑
x∈X

RX(x) logPX(x) +
∑
x∈X

RX(x)

−∑
y∈Y

RY |X(y|x) logQY |X(y|x)

 .

The second first term does not depend on Q due to the marginal constraint Q ∈ ΠX . The second
term is the expectation of the cross entropy from RY |X to QY |X over RX , which is minimized if
RY |X = QY |X . We have specified QY |X and QX , completing the proof.

20

C.1.3 Projection in χ2-Divergence

Let 1 denote the function that is identically equal to 1. Consider the following optimization problem,
which is the subject of the subsequent lemmas:

min
ξ∈AX

∥1−ξ∥2L2(R) , (25)

where

AX :=

f : X × Y → R satisfying
∑
y∈Y

f(x, y)R(x, y) = PX(x) for any x ∈ X

 .

Lemma 10. Assume that PX ≪ RX , and define The problem (25) is feasible, and its solution can
be written as

ξ⋆ = CR
X(1−f) + f

for any f ∈ L2(R), where the linear operator CR
X is specified by

[CR
Xg](x, y) = g(x, y)−

∑
y′∈Y

g(x, y′)RY |X(y′|x).

Proof. First, we establish feasibility by letting

f(x, y) :=

{
PX(x)/RX(x) if RX(x) > 0

1 otherwise
.

This function does not depend on the second input y. Because we assumed that PX ≪ RX , we have
that the terms of f(x, y) for which RX(x) = 0 do not affect whether

∑
y∈Y f(x, y)R(x, y) = PX(x),

because PX(x) = 0 in these cases. In the remainder of this proof, we will show that (25) is an affine
projection problem, and find its solution by converting it to a subspace projection problem. Indeed,
consider f1, . . . , fr ∈ AX , and α1, . . . , αr ∈ R such that

∑r
j=1 αj = 1. Then,

∑
y∈Y

 r∑
j=1

αjfj(x, y)

 ·R(x, y) =

r∑
j=1

αj

∑
y∈Y

fj(x, y)R(x, y)

 = PX(x),

indicating that
∑r

j=1 αjfj(x, y) ∈ AX and AX is an affine subset of L2(R). Define

SX :=

g : X × Y → R satisfying
∑
y∈Y

g(x, y)R(x, y) = 0 for any x ∈ X

 .

Then, for any f ∈ AX , we have that g ∈ SX if and only if g+ f ∈ AX . Taking any f ∈ AX , letting
ϕ⋆ be the solution of

min
ϕ∈SX

∥1−f − ϕ∥2L2(R) , (26)

we will have that ϕ⋆ + f will be the solution of (25). The remainder of the proof is showing that
ϕ⋆ = CR

X(1−f).

First, define the operator µR
X by [µXg](x, y) =

∑
y′∈Y g(x, y′)RY |X(y′|x), and note (by factoring

out RX(x)) that g ∈ SX if and only if µR
Xg = 0. In addition, µR

Xg is linear and idempotent as
µR
XµR

Xg = µR
Xg, so it is a projection operator in L2(R). Thus, SX is the orthogonal complement of

range(µR
X), and the solution of (26) is given by (I−µR

X)(1−f) = CR
X(1−f), because CR

X = I−µR
X .

The claim is proved.

Lemma 11. Assume that PX ≪ RX . Define

Q⋆ := argmin
Q∈ΠX

χ2(Q∥R). (27)

and let ξ⋆ be the solution of problem (25). Then,

Q⋆(x, y) = ξ⋆(x, y)R(x, y) =

{
PX(x)RY |X(y|x) if RX(x) > 0

0 if RX(x) = 0
. (28)

21

Proof. First, by reparametrizing the problem (27) as finding ξ such that Q(x, y) = ξ(x, y)R(x, y),
we can compute its solution by solving

min
ξ∈AX ,ξ≥0

∥1−ξ∥2L2(R) , (29)

Notice that we also have a non-negativity constraint, as opposed to (25). If ξ⋆ solves (25) and
happens to be non-negative, then we have that ξ⋆ solves (29) as well and the first equality of (28)
is satisfied by definition. We show the second equality of (28) by direct computation, which also
establishes the non-negativity of ξ⋆ simultaneously.

Apply Lem. 10 with

f(x, y) :=

{
PX(x)/RX(x) if RX(x) > 0

1 otherwise
.

so that

ξ⋆(x, y) = CR
X (1−f) (x, y) + f(x, y)

=

[∑
z∈Y

f(x, z)RY |X(z|x)− f(x, y)

]
+ f(x, y)

= f(x, y′)

for any y′ ∈ Y . Thus, the likelihood ratio of Q⋆ with respect to R is a marginal reweighting.
Accordingly,

Q⋆(x, y) = ξ⋆(x, y)R(x, y) =

{
PX(x)RY |X(y|x) if RX(x) > 0

0 if RX(x) = 0
,

completing the proof.

Proposition 12. Assume that PX ≪ RX and PY ≪ RY . Define

Q⋆ := argmin
Q∈ΠX

χ2(Q∥R), P ⋆ := argmin
Q∈ΠY

χ2(Q∥R). (30)

Then, it holds that

Q⋆(x, y) =

{
PX(x)RY |X(y|x) if RX(x) > 0

0 if RX(x) = 0

P ⋆(x, y) =

{
PY (y)RX|Y (x|y) if RY (y) > 0

0 if RY (y) = 0
. (31)

Proof. The first equality of (31) follows by the claim of Lem. 11. The second equality follows by
repeating the argument of Lem. 10 and Lem. 11 with (X,x) and (Y, y) swapped.

C.2 Proof of Main Results

We may now control the errors of the ratio of marginals using the projection interpretation established
in the previous sections. Recall the event S as defined in Tab. 1. The following result, the monotonicity
of the marginal violation terms in terms of KL, will be useful in the bound.
Proposition 13. [Nutz, 2021, Proposition 6.10] Under the event S, it holds that

KL(P (0)

n,X∥PX) ≥ KL(PY ∥P (1)

n,Y) ≥ KL(P (2)

n,X∥PX) ≥ . . .

We give the following result for X and the analogous claim holds on Y .
Proposition 14. Assume that Pn,X(x) > 0 for all x ∈ X . It holds that

max
x∈X

∣∣∣∣∣ PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
{
max{n− 1, 1} if k = 1

max{1/p2⋆ − 1, 1} if k > 1.
(32)

22

In addition, we have that

max
x∈X

∣∣∣∣∣ PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
n
√

1
2 KL(Pn,X∥PX) if k = 1

1
p2
⋆

√
1
2 KL(Pn,X∥PX) if k > 1

.

Moreover, when KL(Pn,X∥PX) ≤ p2⋆/2, we have

max
x∈X

∣∣∣∣∣ PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤ 2

p⋆

√
1

2
KL(Pn,X∥PX). (33)

Proof. We first show that P (k−1)
n (x) ≥ 1/n for k = 1 and P (k−1)

n (x) ≥ p2⋆ for k > 1. In the case
that k = 1, the result follows directly from the event S. For k > 1 such that k is odd, we have that
for x ∈ X ,

P (k−1)

n,X (x) =
∑
y∈Y

P (k−1)

n (x, y) =
∑
y∈Y

PY (y)

P (k−2)

n,Y (y)
P (k−2)

n (x, y)

≥ p⋆
∑
y∈Y

P (k−2)

n (x, y) = p⋆P
(k−2)

n,X (x) = p⋆PX(x) ≥ p2⋆.

The result for k even can be proven similarly. We now proceed to prove the inequalities given in the
statement, which will rely on the lower bound above.

Proving the first inequality. Then, for any x ∈ X ,∣∣∣∣∣ PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ = max

{
PX(x)

P (k−1)

n,X (x)
− 1, 1− PX(x)

P (k−1)

n,X (x)

}
≤
{
max{n− 1, 1} if k = 1

max{1/p2⋆ − 1, 1} if k > 1
,

which is the desired result for the first inequality.

Proving the second and third inequalities. Consider an odd k ≥ 1. By the definition of total
variation distance, it holds that

max
x∈X

∣∣∣PX(x)− P (k−1)

n,X (x)
∣∣∣ ≤ TV(P (k−1)

n,X , PX).

According to Pinsker’s inequality, we have that TV(P (k−1)

n,X , PX) ≤
√

1
2 KL(P (k−1)

n,X ∥PX), and so we
have that

max
x∈X

∣∣∣PX(x)− P (k−1)

n,X (x)
∣∣∣ ≤√1

2
KL(P (k−1)

n,X ∥PX) ≤
√

1

2
KL(P (0)

n,X∥PX),

where the last inequality follows by the monotonicity of Sinkhorn iterations given in Prop. 13. We
apply the lower bounds to write

max
x∈X

∣∣∣∣∣ PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
n
√

1
2 KL(Pn,X∥PX) if k = 1

1
p2
⋆

√
1
2 KL(Pn,X∥PX) if k > 1

.

Finally, when
√

1
2 KL(Pn,X∥PX) ≤ p⋆/2, we have that maxx∈X

∣∣∣PX(x)− P (k−1)

n,X (x)
∣∣∣ ≤ p⋆/2 and

thus

min
x∈X

P (k−1)

n,X (x) ≥ min
x∈X

PX(x)−max
x∈X

∣∣∣P (k−1)

n,X (x)− PX(x)
∣∣∣ ≥ p⋆

2
.

Hence,

max
x∈X

∣∣∣∣∣ PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤ maxx∈X

∣∣∣P (k−1)

n,X (x)− PX(x)
∣∣∣

minx∈X P (k−1)

n,X (x)
≤ 2

p⋆

√
1

2
KL(Pn,X∥PX).

23

Now, for k even, set k = 2t for t ≥ 0. We have that

max
y∈Y

∣∣∣P (2t−1)

n,Y (y)− PY (y)
∣∣∣ ≤ TV(P (2t−1)

n,Y , PY) ≤
√

1

2
KL(PY ∥P (2t−1)

n,Y).

Invoke Prop. 13 once again to achieve√
1

2
KL(PY ∥P (2t−1)

n,Y) ≤
√

1

2
KL(Pn,X∥PX),

which completes the proof.

D Statistical Analysis of Balancing Estimators

This section contains the proof of the main result, namely Thm. 1. We first consolidate notation and
then give a broad outline of the proof for readability. Let the expectation of a function h under a
probability measure Q on X × Y by denoted by

Q(h) =
∑

x∈X ,y∈Y
h(x, y)Q(x, y)

so that
φ(k)

n = P (k)

n (h), φ = P (h),

and
G(k)

n (h) =
√
n[P (k)

n − P](h) =
√
n(P (k)

n (h)− P (h)). (34)
Recalling in addition that Ck = CX for k odd and Ck = CY for k even. The event

S := {Supp(Pn,X) = Supp(PX) and Supp(Pn,Y) = Supp(PY)} , (35)
is used for purely technical reasons in many results.

Proof Outline. We first establish that the recursion formula
[P (k)

n − P](h) = [P (k−1)

n − P](Ckh) + V (k−1)

n (Ckh)
holds in Prop. 15, where

V (k−1)

n (h) =

∑

x,y

(
PX

P
(k−1)
n,X

(x)− 1

)
h(x, y)P (k−1)

n (x, y) k odd∑
x,y

(
PY

P
(k−1)
n,Y

(y)− 1

)
h(x, y)P (k−1)

n (x, y) k even
. (36)

The quantity V (k−1)
n (Ckh) describes an error term that accumulates for each iteration of balancing,

which explains why k must be scaled appropriately against n to ensure the error does not accumulate
too fast. Applying the recursion repeatedly to the balanced sequence (P (k)

n)k≥1 and unrolling the
recursion, we see that when k is odd,

[P (k)

n − P](h) = [P (k−1)

n − P](CXh) + V (k−1)

n (CXh)

= [P (k−2)

n − P](CY CXh) + V (k−2)

n (CY CXh) + V (k−1)

n (CXh)

= [P (0)

n − P](C1 . . . Ckh)︸ ︷︷ ︸
first-order term

+
∑k

ℓ=1 V
(ℓ−1)
n (Cℓ . . . Ckh)︸ ︷︷ ︸

higher-order term

(37)

Additionally, let hℓ,k := Cℓ . . . Ckh, so that the first-order term can be written as P (0)
n (h1,k)−P (h1,k)

higher-order term can also be written as
∑k

ℓ=1 V
(ℓ−1)
n (hℓ,k). Because our original goal is to upper

bound the mean squared error, we use the expansion above to write

E |P (k)

n (h)− P (h)|2 ≤ E |P (0)

n (h1,k)− P (h1,k)|
2

+ 2E |P (0)

n (h1,k)− P (h1,k)|
∣∣∣∑k

ℓ=1 V
(ℓ−1)
n (hℓ,k)

∣∣∣+ E
∣∣∣∑k

ℓ=1 V
(ℓ−1)
n (hℓ,k)

∣∣∣2
Regarding the first term, we have that E |P (0)

n (h1,k)− P (h1,k)|2 = σ2
k/n, which is the dominant

term in Thm. 1. Thus, the remaining challenge of the proof will be to upper bound the cross term
and squared term and show its dependence on n. The dominant term of these two will be the cross
term, as we will essentially show that |P (0)

n (h1,k) − P (h1,k)| is O(n−1/2) with high probability
and that |

∑k
ℓ=1 V

(ℓ−1)
n (hℓ,k)| is in fact O(n−1) with high probability. As stated in Sec. 3, a key

intermediate result in controlling the higher-order term is Prop. 14, whose proof is given in Appx. C.
The remaining subsections walk through these steps in detail.

24

D.1 Recursion of Estimation Error

We first recall that the sequence (P (k)
n)k≥1 can be computed with the following formula:

P (0)

n (x, y) := Pn(x, y) and P (k)

n (x, y) :=

PX

P
(k−1)
n,X

(x)P (k−1)
n (x, y) k odd

PY

P
(k−1)
n,Y

(y)P (k−1)
n (x, y) k even

. (38)

Prop. 15 establishes the conditions under which these steps are well-defined (i.e. P (k−1)

n,X (x) > 0 and
P (k−1)

n,Y (y) > 0).

Proposition 15. Let (P (k)
n)k≥1, be a sequence computed according to (8). These iterations are

well-defined under the event S, and for G(k)
n defined in (34) and V (k)

n defined in (36), it holds that

G(k)

n (h) = G(k−1)

n (h) +
√
nV (k−1)

n (h). (39)
and

G(k)

n (h) = G(k−1)

n (Ckh) +
√
nV (k−1)

n (Ckh). (40)

Proof. First, assume that P (k−1)

n,X (x) > 0 and P (k−1)

n,Y (y) > 0 for all x ∈ X and y ∈ Y so that we may
establish the recursion, which we will show by induction toward the end of the proof.

Consider the following steps in the case that k is odd:
P (k)

n (h)

=
∑
x,y

h(x, y)P (k)

n (x, y) =
∑
x,y

h(x, y)
PX

P (k−1)

n,X

(x)P (k−1)

n (x, y) by (38) for k odd

=
∑
x,y

1 · h(x, y)P (k−1)

n (x, y) +
∑
x,y

[
PX

P (k−1)

n,X

(x)− 1

]
· h(x, y)P (k−1)

n (x, y)

= P (k−1)

n (h) + V (k−1)

n (h).

Arguing analogously for k even and subtracting P (h) on both sides, we have that
[P (k)

n − P](h) = [P (k−1)

n − P](h) + V (k−1)

n (h). (41)
We refer to this as the “uncentered” recursion, which proves (39).

We can then establish the following “centered” recursion using the following decomposition in the
case of k odd.

[P (k)

n − P](h)

= [P (k)

n − P](CXh) + [P (k)

n − P](µXh) h = CXh+ µXh

= [P (k−1)

n − P](CXh) + V (k−1)

n (CXh) + [P (k)

n − P](µXh) apply (41) to CXh

= [P (k−1)

n − P](CXh) + V (k−1)

n (CXh). P (k)

n (µXh) = P (µXh)

The last line follows because µXh is only a function on X , and due to the definition of the marginal
rebalancing iterations, P (k)

n,X = PX . This gives the desired formula by substituting (34).

We proceed to show that the iterations are well-defined. We will in fact show that P (k−1)

n,X (x) > 0

and P (k−1)

n,Y (y) > 0 for all x ∈ X and y ∈ Y . For k = 1, P (0)

n,X(x) = Pn,X(x) > 0 and P (0)

n,Y (y) =

Pn,Y (y) > 0 for all x ∈ X and y ∈ Y this holds under the event S by assumption. We argue by
induction that this holds for all k > 1. Assume that the claim is true for {1, . . . , k − 1}, and that k is
even. Then,

P (k−1)

n,X (x) = PX(x) > 0,

P (k−1)

n,Y (y) =
∑
x∈X

P (k−1)

n (x, y) =
∑
x∈X

PX

P (k−2)

n,X

(x)P (k−2)

n (x, y)

≥ min
x∈X

PX

P (k−2)

n,X

(x) · P (k−2)

n,Y (y) > 0

as P (k−2)

n,X (x) > 0 and P (k−2)

n,Y (y) > 0 by the inductive hypothesis. Arguing analogously for k odd
achieves the claim.

25

D.2 Technical Tools & Intermediate Results

Having established the backbone of the argument, we collect in this subsection some useful tools that
are used in the remainder of the proofs.

The following result follows from the method of types in information theory and will be helpful in
deriving the dependence of the higher-order term on n.
Theorem 16. [Cover, 1999, Theorem 11.2.1] Let ν be a discrete probability measure supported on
m atoms. Let U1, . . . , Un

i.i.d.∼ ν and νn be the associated empirical measure. Then, we have for any
ϵ > 0 that

P (KL(νn∥ν) ≥ ϵ) ≤ 2−n(ϵ−m
log(n+1)

n).

We then provide a result that counts the number of terms that appear when repeatedly centering via
the operators C1, . . . , Ck. This formalizes the pattern

CX = I − µX

CY CX = I − µX − µY + µY µX

CXCY CX = I − µX − µY + µY µX + µXµY − µXµY µX ,

and so on. This will be useful when bounding hℓ,k uniformly.
Lemma 17. For any k ≥ 1 and ℓ ∈ {1, . . . , k},

Cℓ . . . Ck = I −
(k−ℓ−1)/2∑

τ=0

(µXµY)
τµX −

(k−ℓ−1)/2∑
τ=0

(µY µX)τµY

+

(k−ℓ)/2∑
τ=1

(µXµY)
τ +

(k−ℓ)/2∑
τ=1

(µY µX)τ + (−1)k−ℓ+1µℓ . . . µk,

where the sum
∑j

τ=i is 0 when i > j and is
∑⌊j⌋

τ=i when j is not an integer by convention.

Proof. We prove the claim by backward induction on ℓ, for the case that k is odd. In the case ℓ = k,
the claim holds because Ck = I − µk. Next, for any ℓ < k, assume that the stated result holds for
{ℓ+ 1, . . . , k}. Then, if ℓ is also odd (so that µℓ = µX),

Cℓ . . . Ck = CℓCℓ+1 . . . Ck

= I −
(k−ℓ−2)/2∑

τ=0

(µXµY)
τµX −

(k−ℓ−2)/2∑
τ=0

(µY µX)τµY

+

(k−ℓ−1)/2∑
τ=1

(µXµY)
τ +

(k−ℓ−1)/2∑
τ=1

(µY µX)τ + µY . . .︸︷︷︸
k−ℓ terms

µX

− µX +

(k−ℓ−2)/2∑
τ=0

(µXµY)
τµX +

(k−ℓ−2)/2∑
τ=0

µX(µY µX)τµY

−
(k−ℓ−1)/2∑

τ=1

(µXµY)
τ −

(k−ℓ−1)/2∑
τ=1

µX(µY µX)τ − (µXµY)
(k−ℓ)/2µX

The red terms and blue terms cancel out to zero. This leaves

Cℓ . . . Ck = I −
(k−ℓ−2)/2∑

τ=0

(µXµY)
τµX −

(k−ℓ−2)/2∑
τ=0

(µY µX)τµY

+

(k−ℓ−1)/2∑
τ=1

(µY µX)τ + (µY µX)(k−ℓ)/2

+

(k−ℓ−2)/2∑
τ=0

µX(µY µX)τµY + (−1)k−ℓ+1µℓ . . . µk

26

wherein we combine the red terms and re-index the blue terms to get

Cℓ . . . Ck = I −
(k−ℓ−2)/2∑

τ=0

(µXµY)
τµX −

(k−ℓ−2)/2∑
τ=0

(µY µX)τµY

+

(k−ℓ)/2∑
τ=1

(µY µX)τ +

(k−ℓ)/2∑
τ=1

(µXµY)
τ + (−1)k−ℓ+1µℓ . . . µk.

Finally, because k − ℓ is even when k is odd and ℓ is odd, we can set the upper bound of the first two
sums to (k − ℓ− 1)/2 without changing the number of terms. This proves the desired result. The
result can be proved similarly when ℓ is even. As a result, we have proved the claim for any odd k
and ℓ ≤ k. Similar arguments can be used for the case of k even and ℓ ≤ k.

D.3 Analysis of Higher-Order Term

Returning to the outline at the start of this section, we may now bound the higher-order remainder
term in (37), namely

k∑
ℓ=1

V (ℓ−1)

n (hℓ,k) =
k∑

ℓ=1

V (ℓ−1)

n (Cℓ . . . Ckh),

depends on controlling the quantity V (k−1)
n in the summation, which we recall for convenience:

V (k−1)

n (h) =

∑

x,y

(
PX

P
(k−1)
n,X

(x)− 1

)
h(x, y)P (k−1)

n (x, y) k odd∑
x,y

(
PY

P
(k−1)
n,Y

(y)− 1

)
h(x, y)P (k−1)

n (x, y) k even
. (42)

Because we have established uniform control over the functions PX/P (k−1)

n,X − 1 and PY /P
(k−1)

n,Y − 1,
via Prop. 14 in Appx. C we can now bound the full remainder in Prop. 20.

We also make use of the following intermediate result, which controls how large the ℓ∞-norm of the
function h can grow after centering.
Lemma 18. ∥hℓ,k∥∞ ≤ 2(k − ℓ+ 1) ∥h∥∞.

Proof. Apply Lem. 17 and the triangle inequality, so that we only need to count the number of terms
that appear in the sums, adding 2 for the first and last term in the expression. We subtract 1 from the
total, as one of either (k − ℓ)/2 or (k − ℓ+ 1)/2 will be a fraction. This yields 2(k − ℓ+ 1) terms
total, the desired result.

We upper bound the sum in Prop. 20. To do so, we introduce some notation. Consider B1 and B2

defined by

B1 := M1 and B2 := max
2≤ℓ≤k

Mℓ for Mℓ :=

maxx∈X

∣∣∣∣ PX(x)

P
(ℓ−1)
n,X (x)

− 1

∣∣∣∣ ℓ odd

maxy∈Y

∣∣∣∣ PY (y)

P
(ℓ−1)
n,Y (y)

− 1

∣∣∣∣ ℓ even

for k ≥ 1. We also enumerate the sample spaces as X = {x1, . . . , xm} and Y = {y1, . . . , ym}, and
define the function

1jk(x, y) :=

{
1 {x = xj} k odd
1 {y = yj} k even

.

This is an indicator function on the j-th element of either X or Y depending on whether k is odd or
even. Finally, for any function h, use (under the event S) recall the empirical process notation

G(k)

n (h) :=
√
n (P (k)

n (h)− P (h)) . (43)

Using this notation, we can rewrite the recursion in terms of the quantity G(k)
n (h) itself. This is

established in the following lemma.

27

Lemma 19. For k odd, it holds that

G(k)

n (h) = G(k−1)

n (CXh) +

m∑
j=1

[
PX(xj)

P (k−1)

n,X (xj)
− 1

]
G(k−1)

n (CXh1jk),

whereas for k even, it holds that

G(k)

n (h) = G(k−1)

n (CY h) +
m∑
j=1

[
PY (yj)

P (k−1)

n,Y (yj)
− 1

]
G(k−1)

n (CY h1jk),

Proof. We give the proof for k odd. By (40) from Prop. 15 and by the definition of G(k)
n (h), we need

only show that P (CXh1jk) = 0. Indeed,

E [CXh1jk|X] (x) =

{
E [CXh|X] (xj) if x = xj

0 if x ̸= xj
.

But E [CXh|X] (xj) = 0 by definition of CX . Taking an expectation over PX gives that
P (CXh1jk) = 0, which implies the desired result. The proof for k even follows symmetrically.

The higher-order term in (37), can be bounded using Prop. 20.

Proposition 20. For any k ≥ 1, the following holds under the event S:

√
n

k∑
ℓ=1

|V (ℓ−1)

n (Cℓ . . . Ckh)| ≤
m∑
j=1

(
B1 |G(0)

n (h1,k1jℓ)|+B2

k∑
ℓ=2

|G(0)

n (hℓ,k1jℓ)|

)
+mB2 ∥h∥∞

√
nk(k − 1)[B1 +B2(k + 1)/3].

Proof. First, for any ℓ ∈ {1, . . . , k}, recall the notation hℓ,k := Cℓ . . . Ckh. By (39) from Prop. 15
and by Lem. 19, we have that for ℓ odd,

√
nV (ℓ−1)

n (hℓ,k) =

m∑
j=1

[
PX

P (ℓ−1)

n,X

(xj)− 1

]
G(ℓ−1)

n (hℓ,k1jℓ). (44)

Using the statement above, we have that

√
n |V (ℓ−1)

n (hℓ,k)| ≤ Mℓ

m∑
j=1

|G(ℓ−1)

n (hℓ,k 1jℓ)| .

The bound above holds for ℓ even as well. Then, using the (39) from Prop. 15 again, we have that for
ℓ ≥ 2,

[P (ℓ−1)

n − P](hℓ,k1jℓ) = [P (ℓ−2)

n − P](hℓ,k1jℓ) + V (ℓ−2)

n (hℓ,k1jℓ)

which implies that

|G(ℓ−1)

n (hℓ,k1jℓ)| ≤ |G(ℓ−2)

n (hℓ,k1jℓ)|+
√
n |V (ℓ−2)

n (hℓ,k1jℓ)|
≤ |G(0)

n (hℓ,k1jℓ)|+
√
n |V (0)

n (hℓ,k1jℓ)|+ . . .+
√
n |V (ℓ−2)

n (hℓ,k1jℓ)|
≤ |G(0)

n (hℓ,k1jℓ)|+M1

√
nP (0)

n (|hℓ,k|1jℓ) + . . .+Mℓ

√
nP (ℓ−2)

n (|hℓ,k|1jℓ)

≤ |G(0)

n (hℓ,k1jℓ)|+ 2 ∥h∥∞
√
n [B1 +B2(ℓ− 1)] (k − ℓ+ 1), (45)

28

by Lem. 18 and M1 ≤ B1 and Mℓ ≤ B2 for ℓ ≥ 2. Summing these bounds, we have that

√
n

k∑
ℓ=1

|V (ℓ−1)

n (hℓ,k)|

≤ M1

m∑
j=1

|G(0)

n (h1,k1jℓ)|+
k∑

ℓ=2

Mℓ

m∑
j=1

|G(ℓ−1)

n (hℓ,k1jℓ)|

≤ B1

m∑
j=1

|G(0)

n (h1,k1jℓ)|+B2

k∑
ℓ=2

m∑
j=1

|G(ℓ−1)

n (hℓ,k1jℓ)|

≤ B1

m∑
j=1

|G(0)

n (h1,k1jℓ)| +

B2

k∑
ℓ=2

m∑
j=1

(
|G(0)

n (hℓ,k1jℓ)|+ 2 ∥h∥∞
√
n [B1 +B2(ℓ− 1)] (k − ℓ+ 1)

)
apply (45)

=

m∑
j=1

(
B1 |G(0)

n (h1,k1jℓ)|+B2

k∑
ℓ=2

|G(0)

n (hℓ,k1jℓ)|

)
+

2mB2 ∥h∥∞
√
n

k∑
ℓ=2

[B1 +B2(ℓ− 1)] (k − ℓ+ 1),

because |X | = m. We sum up the last term:
k∑

ℓ=2

[B1 +B2(ℓ− 1)] (k − ℓ+ 1) = B1

k−1∑
ℓ=1

(k − ℓ) +B2

k−1∑
ℓ=1

ℓ(k − ℓ)

=
k(k − 1)

2
[B1 +B2(k + 1)/3] .

completing the proof.

D.4 Proof of Main Results

We can now show the main result of this section: the bound on the mean squared error of the
rebalanced estimator. Recall the event

S := {Supp(Pn,X) = Supp(PX) and Supp(Pn,Y) = Supp(PY)} (46)
as introduced in (35). To remind the reader of the high-level steps of the proof, we may decompose
the error on the event S we used the estimator

φ̃(k)

n := φ(k)

n 1S + φ(0)

n 1Sc

so we decompose on the event S to write

EP

[(
P̃n

(k)

(h)− P (h)
)2]

= EP

[
(Pn(h)− P (h))

2
1Sc

]
+ EP

[
(P (k)

n (h)− P (h))
2
1S

]
. (47)

Then, we use the upcoming Prop. 21 to bound the first term, which will in turn require showing that
S occurs with high probability. As for the second term, we will apply Prop. 15 and the derivation (37)
to write

EP

[
(P (k)

n (h)− P (h))
2
1S

]
= EP

[
T 2
1 1S

]
+ 2EP [T1T21S] + EP

[
T 2
2 1S

]
(48)

for

T1 := [P (0)

n − P](C1 . . . Ckh) and T2 :=

k∑
ℓ=1

V (ℓ−1)

n (Cℓ . . . Ckh). (49)

By definition, we have that EP

[
T 2
1 1S

]
≤ EP

[
T 2
1

]
= σ2

k/n. It then remains to bound the cross
term EP [T1T21S] and squared term EP

[
T 2
2 1S

]
. This is accomplished by Lem. 23 and Lem. 22,

respectively.

29

Proposition 21. It holds that P (Sc) ≤ 2m(1− p⋆)
n. Moreover, for any δ ∈ (0, 1), we have

EP

[
(Pn(h)− P (h))

2
1Sc

]
≤ 4 ∥h∥2∞ min {2m(1− p⋆)

n, δ}+ 2 log(2/δ)

n
∥h∥2∞ 2m(1− p⋆)

n.

Proof. Define FX := {Supp(Pn,X) ̸= Supp(PX)} and FY := {Supp(Pn,Y) ̸= Supp(PY)}, so that
Sc = FX ∪FY . We first control the probability of FX . Let Fj := {Pn,X(xj) = 0} for j ∈ [m]. We
then obtain FX = ∪m

j=1Fj , which implies by the union bound that

P (FX) ≤
m∑
j=1

P (Fj) =

m∑
j=1

(1− PX(xj))
n ≤ m(1− p⋆)

n.

Similarly, we have that P (FY) ≤ m(1− p⋆)
n and thus P (Sc) ≤ 2m(1− p⋆)

n, which gives the first
claim.

To control the expectation, consider any δ > 0, and define the event

Eδ :=

{∣∣∣P (0)
n (h)− P (h)

∣∣∣ ≤√2 log (2/δ)

n
∥h∥∞

}
.

By Hoeffding’s inequality, it holds that P (Eδ) ≥ 1− δ. Furthermore, we get

E[1Sc(P (0)
n (h)− P (h))2] = E[1Sc1Ec

δ
(P (0)

n (h)− P (h))2] + E[1Sc1Eδ
(P (0)

n (h)− P (h))2]

≤ 4 ∥h∥2∞ E[1Sc1Ec
δ
] +

2 log (2/δ)

n
∥h∥2∞ E[1Sc1Eδ

]

≤ 4 ∥h∥2∞ min{P (Sc), P (Ec
δ)}+

2 log (2/δ)

n
∥h∥2∞ P (Sc)

≤ 4 ∥h∥2∞ min{2m(1− p⋆)
n, δ}+ 2 log (2/δ)

n
∥h∥2∞ 2m(1− p⋆)

n.

In order to bound the terms appearing in (48), we introduce the events Eδ
1 , Eδ

2 , and Eδ
3 , defined by

Eδ
1 :=

{
max {KL(Pn,X∥PX),KL(Pn,Y ∥PY)} ≤ 1

n
log2

2

δ
+m

log(n+ 1)

n

}
Fδ

ℓ :=
{
|G(0)

n (hℓ,k 1jℓ)| ≤
√
2 log(2mk/δ)2(k − ℓ+ 1) ∥h∥∞

}
, ℓ = 1, . . . , k, j = 1, . . . ,m

Eδ
2 :=

k⋂
ℓ=1

Fδ
ℓ

Eδ
3 :=

{
|G(0)

n (h1,k)| ≤
√

2 log(2/δ)2k ∥h∥∞
}
.

The events are constructed such that P(Eδ
1) ≥ 1− δ, P(Eδ

2) ≥ 1− δ, and P(Eδ
3) ≥ 1− δ, as we used

in the upcoming proofs of Lem. 23, Lem. 22, and Thm. 24.
Lemma 22 (Squared term bound). Let T2 be defined as in (49). For any δ > 0, assuming that
n ≥ 2[log2(2/δ) +m log(n+ 1)]/p2⋆, we have that

EP

[
T 2
2 1S

]
≤

2 ∥h∥2∞ m2k2

p2⋆
[log2(2/δ) +m log(n+ 1)]

2−1{k=1} ×(4n+
k − 1

p2⋆

(
n+ 2 +

k + 1

p2⋆

))2

δ +
8

n2

(√
2 log

2mk

δ
(k + 1) +

(k − 1)(k + 4)

p2⋆

)2
 .

Proof. The following computations are done under the event S. First, apply Prop. 20 to write

|T2| ≤
1√
n

m∑
j=1

(
B1 |G(0)

n (h1,k 1jℓ)|+B2

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)|

)
+

mB2 ∥h∥∞ k(k − 1)[B1 +B2(k + 1)/3]. (50)

30

We decompose on the event Eδ
1 ∩ Eδ

2 . Note that by Thm. 16, we have that P(Eδ
1) ≥ 1 − δ. It

follows from Hoeffding’s inequality, the union bound, and boundedness of ∥hℓ,k 1jℓ∥ by Lem. 18
that P(Eδ

2) ≥ 1− δ As a result, P(Eδ
1 ∩ Eδ

2) ≥ 1− 2δ.

Bound |T2| under the event S\(Eδ
1 ∩Eδ

2). In this case, we apply (32) from Prop. 14 to get B1 ≤ n
and B2 ≤ 1/p2⋆, along with the universal bounds from Lem. 18:

1√
n
|G(0)

n (h1,k 1jℓ)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞

1√
n

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤ 2

k∑
ℓ=2

∥hℓ,k∥∞ ≤
k∑

ℓ=2

4(k − ℓ+ 1) ∥h∥∞ = 2k(k − 1) ∥h∥∞

so that by plugging into (50),

|T2| ≤ ∥h∥∞ mk

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]
,

and in turn,

EP

[
T 2
2 1S\(Eδ

1∩Eδ
2)

]
≤ 2 ∥h∥2∞ m2k2

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]2
δ. (51)

Bound |T2| under the event S ∩ Eδ
1 ∩ Eδ

2 . In this case, we may use that n ≥ 2[log2(2/δ) +
m log(n+ 1)]/p2⋆ apply (33) from Prop. 14 to get

max {B1, B2} ≤ 2

p⋆

√
1

2
KL(Pn,X∥PX) ≤ 1

p⋆
√
n

√
2 log2(2/δ) + 2m log(n+ 1)

and the bounds based on Eδ
2 which give

|G(0)

n (h1,k 1jℓ)| ≤
√
2 log

2mk

δ
2k ∥h∥∞

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤
k∑

ℓ=2

√
2 log

2mk

δ
2(k − ℓ+ 1) ∥h∥∞ ≤

√
2 log

2mk

δ
k(k − 1) ∥h∥∞ ,

By plugging into (50),

|T2| ≤
2m ∥h∥∞

√
2 log(2mk/δ) [2 log2(2/δ) + 2m log(n+ 1)]

np⋆
k(k + 1) + (52)

m ∥h∥∞ [2 log2(2/δ) + 2m log(n+ 1)]

3np2⋆
k(k − 1)(k + 4) (53)

≤
4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

np2⋆
× (54)[

p⋆
√
2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)

]
. (55)

In turn,

EP

[
T 2
2 1S\(Eδ

1∩Eδ
2)

]
≤

16 ∥h∥2∞ m2k2 [log2(2/δ) +m log(n+ 1)]
2−1{k=1}

n2p4⋆
×[

p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]2

. (56)

Combining together both (56) and (51) and using that [log2(2/δ) + 2m log(n+ 1)] ≥ 1, we have
that

EP

[
T 2
2 1S

]
≤

2 ∥h∥2∞ m2k2

p2⋆
[log2(2/δ) +m log(n+ 1)]

2−1{k=1} ×[(
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

p2⋆

))2

δ +
8

n2

(√
2 log(2mk/δ)(k + 1) +

(k − 1)(k + 4)

p2⋆

)2
]
,

the result as desired.

31

Lemma 23 (Cross term bound). Let T1 and T2 be defined as in (49). For any δ > 0, assuming that
n ≥ 2[log2(2/δ) +m log(n+ 1)]/p2⋆, we have that

EP [T1T21S]

≤
2mk2 ∥h∥2∞

√
2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

p2⋆
×[

p⋆
√

2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)

n3/2
+ 6

(
4np2⋆ + (k − 1)

(
n+ 2 +

k + 1

p2⋆

))
δ

]
,

Proof. The following computations are done under the event S. First, apply Prop. 20 to write

|T1T2| ≤
1√
n
|G(0)

n (h1,k)|

[
1√
n

m∑
j=1

(
B1 |G(0)

n (h1,k 1jℓ)|+B2

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)|

)
+

mB2 ∥h∥∞ k(k − 1)[B1 +B2(k + 1)/3]

]
. (57)

We decompose on the event Eδ
1∩Eδ

2∩Eδ
3 . Note that by Thm. 16 and that n ≥ log2(2/δ)+m log(n+1),

we have that P(Eδ
1) ≥ 1 − δ. It follows by Hoeffding’s inequality and the union bound that

P(Eδ
2) ≥ 1− δ. Similarly, we also have by Hoeffding’s inequality that P(Eδ

3) ≥ 1− δ. As a result,
P(Eδ

1 ∩ Eδ
2 ∩ Eδ

3) ≥ 1− 3δ.

Bound |T1T2| under the event S\(Eδ
1 ∩ Eδ

2 ∩ Eδ
3). In this case, we apply (32) from Prop. 14 to get

B1 ≤ n and B2 ≤ 1/p2⋆, along with the universal bounds from Lem. 18:

1√
n
|G(0)

n (h1,k)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞
1√
n
|G(0)

n (h1,k 1jℓ)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞

1√
n

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤ 2

k∑
ℓ=2

∥hℓ,k∥∞ ≤
k∑

ℓ=2

4(k − ℓ+ 1) ∥h∥∞ = 2k(k − 1) ∥h∥∞ ,

so that by plugging into (57),

|T1T2| ≤ 4k2 ∥h∥2∞ m

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]
,

and in turn,

EP

[
T1T21S\(Eδ

1∩Eδ
2∩Eδ

3)

]
≤

12k2 ∥h∥2∞ m

p2⋆

[
4np2⋆ + (k − 1)

(
n+ 2 +

k + 1

3p2⋆

)]
δ. (58)

Bound |T1T2| under the event S ∩ Eδ
1 ∩ Eδ

2 ∩ Eδ
3 . In this case, we may use that n ≥ 2[log2(2/δ) +

m log(n+ 1)]/p2⋆ apply (33) from Prop. 14 to get

max {B1, B2} ≤ 2

p⋆

√
1

2
KL(Pn,X∥PX) ≤ 1√

n

1

p⋆

√
2 log2(2/δ) + 2m log(n+ 1)

and the bounds based on Eδ
2 ∩ Eδ

2 ∩ Eδ
3 which give

|G(0)

n (h1,k)| ≤
√

2 log(2/δ)2k ∥h∥∞
|G(0)

n (h1,k 1jℓ)| ≤
√
2 log(2mk/δ)2k ∥h∥∞

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤
k∑

ℓ=2

√
2 log

2mk

δ
2(k − ℓ+ 1) ∥h∥∞ ≤

√
2 log

2mk

δ
k(k − 1) ∥h∥∞ ,

32

By plugging into (57),

|T2| ≤
m ∥h∥∞

√
2 log(2mk/δ) [2 log2(2/δ) + 2m log(n+ 1)]

np⋆
k(k + 1) +

m ∥h∥∞ [2 log2(2/δ) + 2m log(n+ 1)]

3np2⋆
k(k − 1)(k + 4)

≤
mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

np2⋆
×[

p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]

|T1T2| ≤
2mk2 ∥h∥2∞

√
2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

n3/2p2⋆
×[

p⋆
√
2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)

]
,

In turn,

EP

[
T 2
2 1S\(Eδ

1∩Eδ
2∩Eδ

3)

]
≤

2mk2 ∥h∥2∞
√
2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

n3/2p2⋆
×[

p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]
, (59)

Combining together both (59) and (58) and using that [log2(2/δ) + 2m log(n+ 1)] ≥ 1, we have
that

EP [T1T21S]

≤
2mk2 ∥h∥2∞

√
2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

p2⋆
×[

p⋆
√
2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)

n3/2
+ 6

(
4np2⋆ + (k − 1)

(
n+ 2 +

k + 1

p2⋆

))
δ

]
,

the result as desired.

We now combine the previous results to prove Thm. 24.

Theorem 24. For a sequence of rebalanced distributions (P̃n
(k)

)k≥1, there exists an absolute constant
C > 0 such that when n ≥ C[log2(2n/p⋆) +m log (n+ 1)]/p2⋆,

EP [(P̃n
(k)

(h)− P (h))2] ≤ σ2
k

n
+

CB

n3/2
, (60)

where

B =

√
log (2n/p⋆)m

2k4 ∥h∥2∞
p2⋆

(
log2

2n

p⋆
+m log (n+ 1)

)2−1{k} (
log

2mkn

p⋆
+

(k − 1)2

p2⋆

)
.

Proof. We apply the decomposition (47), and subsequently handle the second term using bounds on
the terms in (48). Set δ = p4⋆/n

4. We apply Lem. 22 and Lem. 23 with this choice of δ, so that there
exists an absolute constants C̃, C1, and C2 such that

EP [T1T21S] ≤ C1
∥h∥2∞ m2k3

√
log(2n/p⋆)

n3/2p2⋆
[log2(2n/p⋆) +m log(n+ 1)]

1−1{k=1}/2 ×(
log

2mnk

p⋆
+

k − 1

p2⋆

)
EP

[
T 2
2 1S

]
≤ C2

∥h∥2∞ m2k4

n2p2⋆
[log2(2n/p⋆) +m log(n+ 1)]

2−1{k=1} ×(
log

2mnk

p⋆
+

(k − 1)2

p2⋆

)
,

33

when n ≥ C̃[log2(2n/p⋆) +m log (n+ 1)]/p2⋆. This then implies that there is an absolute constant
C3 such that

EP

[(
P̃n

(k)

(h)− P (h)
)2]

≤ EP

[
(P (0)

n (h)− P (h))
2
1Sc

]
+

σ2
k

n
+

C3 ∥h∥2∞ m2k4
√
log(2n/p⋆)

n3/2p2⋆

[
log2

2n

p⋆
+m log(n+ 1)

]2−1{k=1}(
log

2mnk

p⋆
+

(k − 1)2

p2⋆

)
.

Next, we apply Prop. 21 with the same choice of δ. Because 2[log2(2/δ)+m log(n+1)] ≥ log(m/δ)
and − log(1 − p⋆) ≥ p⋆ ≥ p2⋆, we have that n ≥ log(δ/m)/ log(1 − p⋆), which implies that
m(1− p⋆)

n ≤ δ. Combining with the display above, we have that there exists an absolute constant
C > 0 such that

EP

[(
P̃n

(k)

(h)− P (h)
)2]

≤ σ2
k

n
+

C ∥h∥2∞ m2k4
√

log(2n/p⋆)

n3/2p2⋆

× [log2(2/δ) +m log(n+ 1)]
2−1{k=1}

(
log

2mnk

p⋆
+

(k − 1)2

p2⋆

)
,

which is the claimed result.

While not shown in the main text, similar techniques to those used above can also control the bias of

P̃n
(k)

(h) as in Thm. 25. Interestingly, this bias is of order O(n−2) which confirms the intuition that

even thought P̃n
(k)

(h) may be biased, the dominant term is the variance.
Theorem 25. For a sequence of rebalanced distributions (P (k))k≥1, there exists an absolute constant
C > 0 such that when n ≥ C[log2(2n/p⋆) +m log (n+ 1)]/p2⋆,∣∣∣EP [P̃n

(k)
(h)− P (h)]

∣∣∣2 ≤ CB

n2
, (61)

where B is as defined in Thm. 24.

Proof. First, apply the decomposition (47) so that∣∣∣EP

[
P̃n

(k)

(h)− P (h)
]∣∣∣ ≤ |EP [(Pn(h)− P (h))1Sc]|+ |EP [(P (k)

n (h)− P (h))1S]| .

By using the argument of Prop. 21, we have that

|EP [Pn(h)− P (h)]1Sc | ≤ 2 ∥h∥∞ min {2m(1− p⋆)
n, δ}+

√
2 log(2/δ)

n
∥h∥∞ 2m(1− p⋆)

n.

Then, by the recursion formula Equation (37), we have that
√
n |EP [(P (k)

n (h)− P (h))1S]|

= |EP [G(k)

n (h)1S]| =

∣∣∣∣∣EP

[
(1− 1Sc)G(0)

n (C1 . . . Ckh) +
√
n1S

k∑
ℓ=1

V (ℓ−1)

n (Cℓ . . . Ckh)

]∣∣∣∣∣ .
Because G(0)

n (C1 . . . Ckh) has zero mean, it follows that
√
n |EP [(P (k)

n (h)− P (h))1S]| ≤ |EP [1ScG(0)

n (C1 . . . Ckh)]|+
√
n |EP [1ST2]|

We have by Hoeffding’s inequality that P(Eδ
3) ≥ 1− δ, and that by Lem. 18 that G(0)

n (C1 . . . Ckh) ≤
4k

√
n ∥h∥∞ universally. As a result, applying Prop. 21 once again,

|EP [1ScG(0)

n (C1 . . . Ckh)]|

≤
∣∣∣EP

[
1Sc1Eδ

3
G(0)

n (C1 . . . Ckh)
]∣∣∣+ ∣∣∣EP

[
1Sc1Eδ

3
G(0)

n (C1 . . . Ckh)
]∣∣∣

≤ 4k
√
n ∥h∥∞ min {2m(1− p⋆)

n, δ}+
√
2 log(2/δ)2k ∥h∥∞ 2m(1− p⋆)

n.

34

Using a similar argument to Lem. 22, we have that under S\(Eδ
1 ∩Eδ

2) (which occurs with probability
no more than 2δ),

|T2| ≤ ∥h∥∞ mk

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]
,

and that under S ∩ Eδ
1 ∩ Eδ

2 (which occurs with probability at least 1− 2δ),

|T2| ≤
4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

np2⋆[
p⋆
√
2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)

]
.

Applying the decomposition |EP [1ST2]| ≤
∣∣∣EP

[
1S\(Eδ

1∩Eδ
2)
T2

]∣∣∣+∣∣∣EP

[
1S∩Eδ

1∩Eδ
2
T2

]∣∣∣ and setting

δ =
p2
⋆

n2 achieves the desired result.

D.5 Misspecified Marginal Distributions

We now adapt the main results to cases in which the marginal distributions (PX , PY) are misspecified,
in that the user is provided marginal distributions (P̂X,ϵ, P̂Y,ϵ) which satisfy the following structure.

Assumption 1. There exist fixed probability mass functions P̂X and P̂Y for some ϵ ∈ [0, 1),

P̂X,ϵ = (1− ϵ)PX + ϵP̂X and P̂Y,ϵ = (1− ϵ)PY + ϵP̂Y .

We also have the existence of the positive quantity

p̂⋆ := min{min
x

P̂X(x),min
y

P̂Y (y)} > 0.

Given the existence of p̂⋆ > 0, we may also define

p̂⋆,ϵ = min{min
x

P̂X,ϵ(x),min
y

P̂Y,ϵ(y)} ≥ ϵp̂⋆ + (1− ϵ)p⋆ > 0.

To be precise, the iterations of balancing follow P̂ (0)
n = Pn and

P̂ (k)

n (x, y) :=

P̂X,ϵ(x)

P̂
(k−1)
n,X (x)

· P̂ (k−1)
n (x, y) k odd

P̂Y,ϵ(y)

P̂
(k−1)
n,Y (y)

· P̂ (k−1)
n (x, y) k even

. (62)

We start by deriving a result similar to Prop. 15. Since ϵ < 1, the (possibly misspecified) target
marginals P̂X,ϵ(x) > 0 and P̂Y,ϵ(y) > 0 for all x ∈ X and y ∈ Y . Define

V̂ (k−1)

n (h) :=

∑

x,y

(
P̂X,ϵ

P̂
(k−1)
n,X

(x)− 1

)
h(x, y)P̂ (k−1)

n (x, y) k odd∑
x,y

(
P̂Y,ϵ

P̂
(k−1)
n,Y

(y)− 1

)
h(x, y)P̂ (k−1)

n (x, y) k even
(63)

and

Ĝ(k)

n (h) :=
√
n
(
P̂ (k)

n (h)− P (h)
)
.

The format of this section will be to derive results analogous to the building blocks of the previous
section. From that point, the computations from Appx. D.4 will achieve the desired result. For the
sake of comparison to Thm. 1 we consider error terms containing ϵ only by their dependence on
(ϵ, k, n, p̂⋆,ϵ).

35

D.5.1 Intermediate Results

Proposition 26. Let (P̂ (k)
n)k≥1 be a sequence computed according to (62). Define

c2 = max
{
χ2(P̂X∥PX), χ2(P̂Y ∥PY)

}
.

These iterations are well-defined under the event S, and for G(k)
n defined in (43), it holds that

Ĝ(k)

n (h) = Ĝ(k−1)

n (h) +
√
nV̂ (k−1)

n (h) (64)

and

Ĝ(k)

n (h) = Ĝ(k−1)

n (Ckh) +
√
nV̂ (k−1)

n (Ckh) +

{√
n[P̂X,ϵ − PX](µXh) if k odd√
n[P̂Y,ϵ − PY](µY h) if k even

. (65)

Furthermore, ∣∣∣Ĝ(k)

n (h)
∣∣∣ ≤ ∣∣∣Ĝ(k−1)

n (Ckh)
∣∣∣+√

n
∣∣∣V̂ (k−1)

n (Ckh)
∣∣∣+ c ∥h∥L2(P)

√
nϵ

=
∣∣∣Ĝ(k−1)

n (Ckh)
∣∣∣+√

n
∣∣∣V̂ (k−1)

n (Ckh)
∣∣∣+O

(√
nϵ
)
. (66)

Proof. The proof that P̂ (k−1)

n,X (x) > 0 and P̂ (k−1)

n,Y (y) > 0 for all x ∈ X and y ∈ Y follows the exact
same steps as in the proof of Prop. 15. We take this for granted and establish the recursion.

Consider the following steps in the case that k is odd:

P̂ (k)

n (h) =
∑
x,y

h(x, y)P̂ (k)

n (x, y) =
∑
x,y

h(x, y)
P̂X,ϵ

P̂ (k−1)

n,X

(x)P̂ (k−1)

n (x, y)

=
∑
x,y

1 · h(x, y)P̂ (k−1)

n (x, y) +
∑
x,y

[
P̂X,ϵ

P̂ (k−1)

n,X

(x)− 1

]
· h(x, y)P̂ (k−1)

n (x, y)

= P̂ (k−1)

n (h) + V̂ (k−1)

n (h).

Subtracting P (h) on both sides, we have that

[P̂ (k)

n − P](h) = [P̂ (k−1)

n − P](h) + V̂ (k−1)

n (h). (67)

This proves the uncentered recursion formula given in (64). We then show the centered version.

[P̂ (k)

n − P](h)

= [P̂ (k)

n − P](CXh) + [P̂ (k)

n − P](µXh)

= [P̂ (k)

n − P](CXh) + [P̂X,ϵ − PX](µXh)

= [P̂ (k−1)

n − P](CXh) + V̂ (k−1)

n (CXh) + [P̂X,ϵ − PX](µXh).

Next, we bound the additional error term. By the Cauchy-Schwarz inequality,

[P̂X,ϵ − PX](µXh) ≤
∥∥∥ P̂X,ϵ

PX
− 1
∥∥∥
L2(PX)

· ∥µXh∥L2(PX)

=

√
χ2(P̂X,ϵ∥PX) · ∥µXh∥L2(PX)

≤
√
χ2(P̂X,ϵ∥PX) · ∥h∥L2(P) ,

as µX is an orthogonal projection in L2(P). Using convexity of f -divergences, we have that

χ2(P̂X,ϵ∥PX) ≤ ϵχ2(P̂X∥PX) + (1− ϵ)χ2(PX∥PX) = ϵχ2(P̂X∥PX).

This achieves the desired result.

Using similar ideas, we then prove an analog of Lem. 19.

36

Lemma 27. For k odd, it holds that

√
nV̂ (k−1)

n (CXh) =

m∑
j=1

(
P̂X,ϵ

P̂ (k−1)

n,X

(xj)− 1

)
Ĝ(k−1)

n (CXh1jk),

whereas for k even, it holds that

√
nV̂ (k−1)

n (CY h) =
m∑
j=1

(
P̂Y,ϵ

P̂ (k−1)

n,Y

(xj)− 1

)
Ĝ(k−1)

n (CY h1jk).

Proof. We give the proof for k odd. We claim that we need only show that P (CXh1jk) = 0. This
would show that

√
nV̂ (k−1)

n (CXh) =
∑
x,y

(
P̂X,ϵ

P̂ (k−1)

n,X

(x)− 1

)
[CXh](x, y)P̂ (k−1)

n (x, y)

=
√
n

m∑
j=1

∑
x,y

(
P̂X,ϵ

P̂ (k−1)

n,X

(x)− 1

)
[CXh1jk](x, y)P̂

(k−1)

n (x, y)

=
√
n

m∑
j=1

∑
x,y

(
P̂X,ϵ

P̂ (k−1)

n,X

(xj)− 1

)
[CXh1jk](x, y)P̂

(k−1)

n (x, y)

=

m∑
j=1

(
P̂X,ϵ

P̂ (k−1)

n,X

(xj)− 1

)
√
n
∑
x,y

[CXh1jk](x, y)P̂
(k−1)

n (x, y)

=

m∑
j=1

(
P̂X,ϵ

P̂ (k−1)

n,X

(xj)− 1

)
Ĝ(k−1)

n (CXh1jk),

where P (CXh1jk) = 0 is employed in the last step. Now the result follows from (65) in Prop. 26
and the definition of Ĝ(k)

n (h). To prove the claim, as in Lem. 19, write

E [CXh1jk|X] (x) =

{
E [CXh|X] (xj) if x = xj

0 if x ̸= xj
.

But E [CXh|X] (xj) = 0 by definition of CX . Taking an expectation over PX gives that
P (CXh1jk) = 0, which implies the desired result. The proof for k even follows symmetrically.

For the remainder of the argument, we see that (66) can be unrolled so that∣∣∣Ĝ(k)

n (h)
∣∣∣ ≤ |G(0)

n (C1 . . . Ckh)|︸ ︷︷ ︸
first-order term

+
√
n

k∑
ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣︸ ︷︷ ︸

higher-order term

+ O(k
√
nϵ)︸ ︷︷ ︸

misspecification

, (68)

where we use that G(0)
n = Ĝ(0)

n .

Next, we need to bound
∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣, in particular accounting for the marginal violation term.

We follow similar steps as in the analysis of the higher-order term in Appx. D.3.
Proposition 28. Assume that Pn,X(x) > 0 for all x ∈ X . It holds that

max
x∈X

∣∣∣∣∣ P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
{
max{n− 1, 1} if k = 1

max{1/p̂2⋆,ϵ − 1, 1} if k > 1.
(69)

In addition, we have that

max
x∈X

∣∣∣∣∣ P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
O

(
n
√

log 1
1−ϵ

)
+ n

√
1
2 KL(Pn,X∥PX) if k = 1

O
(

1
p̂2
⋆,ϵ

√
log 1

1−ϵ

)
+ 1

p̂2
⋆,ϵ

√
1
2 KL(Pn,X∥PX) if k > 1

,

37

Moreover, when KL(Pn,X∥PX) ≤ p̂2
⋆,ϵ

8 and ϵ ≤ 1− exp
(
− p̂2

⋆,ϵ

8

)
, we have

max
x∈X

∣∣∣∣∣ P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤ O
(

1
p̂⋆,ϵ

√
log 1

1−ϵ

)
+

2

p̂⋆,ϵ

√
1

2
KL(Pn,X∥PX). (70)

Proof. First, observe that P̂ (0)

n,X(x) = P (0)

n,X(x) ≥ 1/n under the event S. For k > 1 such that k is
odd, we have that for x ∈ X ,

P̂ (k−1)

n,X (x) =
∑
y∈Y

P̂ (k−1)

n (x, y) =
∑
y∈Y

P̂Y,ϵ(y)

P̂ (k−2)

n,Y (y)
P̂ (k−2)

n (x, y)

≥ p̂⋆,ϵ
∑
y∈Y

P̂ (k−2)

n (x, y) = p̂⋆,ϵP̂
(k−2)

n,X (x) = p̂⋆,ϵP̂X,ϵ(x) ≥ p̂2⋆,ϵ.

The result for k even can be proven similarly. We now prove the inequalities listed in the statement
using on the lower bounds above.

Proving the first inequality. For any x ∈ X ,∣∣∣∣∣ P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ = max

{
P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1, 1− P̂X,ϵ(x)

P̂ (k−1)

n,X (x)

}
≤
{
max{n− 1, 1} if k = 1

max{1/p̂2⋆,ϵ − 1, 1} if k > 1
,

which is the desired result.

Proving the second and third inequalities. Consider an odd k ≥ 1. By the definition of total
variation distance, it holds that

max
x∈X

∣∣∣P̂X,ϵ(x)− P̂ (k−1)

n,X (x)
∣∣∣ ≤ TV(P̂ (k−1)

n,X , P̂X,ϵ).

According to Pinsker’s inequality, we have that TV(P̂ (k−1)

n,X , P̂X,ϵ) ≤
√

1
2 KL(P̂ (k−1)

n,X ∥P̂X,ϵ), and so
we have that

max
x∈X

∣∣∣P̂X,ϵ(x)− P̂ (k−1)

n,X (x)
∣∣∣ ≤√1

2
KL(P̂ (k−1)

n,X ∥P̂X,ϵ) ≤
√

1

2
KL(P (0)

n,X∥P̂X,ϵ),

where the last inequality follows by the monotonicity of Sinkhorn iterations given in Prop. 13. Notice
that the remaining term is KL(P (0)

n,X∥P̂X,ϵ) = KL(Pn,X∥P̂X,ϵ), which may not decay to zero as
n → ∞. Because ϵ < 1, write

KL(Pn,X∥P̂X,ϵ) =
∑
x∈X

Pn,X(x) log
Pn,X(x)

(1− ϵ)PX(x) + ϵP̂X(x)

≤
∑
x∈X

Pn,X(x) log
Pn,X(x)

(1− ϵ)PX(x)

= KL(Pn,X∥PX) + log
1

1− ϵ

=⇒
√

1

2
KL(Pn,X∥P̂X,ϵ) ≤

√
1

2
KL(Pn,X∥PX) +

√
1

2
log

1

1− ϵ
.

We can then apply the lower bounds

max
x∈X

∣∣∣∣∣ P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
n

(√
1
2 KL(Pn,X∥PX) +

√
1
2 log

1
1−ϵ

)
if k = 1

1
p̂2
⋆,ϵ

(√
1
2 KL(Pn,X∥PX) +

√
1
2 log

1
1−ϵ

)
if k > 1

.

Finally, combining the arguments above, we have that

max
x∈X

∣∣∣P̂X,ϵ(x)− P̂ (k−1)

n,X (x)
∣∣∣ ≤√1

2
KL(Pn,X∥PX) +

√
1

2
log

1

1− ϵ

≤ p̂⋆,ϵ
4

+
p̂⋆,ϵ
4

=
p̂⋆,ϵ
2

,

38

where the last step invoked the assumption that

KL(Pn,X∥PX) ≤
p̂2⋆,ϵ
8

and ϵ ≤ 1− exp
(
− p̂2

⋆,ϵ

8

)
.

This means that

min
x∈X

P̂ (k−1)

n,X (x) ≥ min
x∈X

P̂X,ϵ(x)−max
x∈X

∣∣∣P̂ (k−1)

n,X (x)− P̂X,ϵ(x)
∣∣∣ ≥ p̂⋆,ϵ

2
.

Hence,

max
x∈X

∣∣∣∣∣ P̂X,ϵ(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤ maxx∈X

∣∣∣P̂ (k−1)

n,X (x)− P̂X,ϵ(x)
∣∣∣

minx∈X P̂ (k−1)

n,X (x)
≤ 2

p̂⋆,ϵ

√
1

2
KL(Pn,X∥P̂X,ϵ).

Now, for k even, set k = 2t for t ≥ 0. We have that

max
y∈Y

∣∣∣P̂ (2t−1)

n,Y (y)− P̂Y,ϵ(y)
∣∣∣ ≤ TV(P̂ (2t−1)

n,Y , P̂Y,ϵ) ≤
√

1

2
KL(P̂Y,ϵ∥P̂ (2t−1)

n,Y).

Invoke Prop. 13 once again to achieve√
1

2
KL(P̂Y,ϵ∥P̂ (2t−1)

n,Y) ≤
√

1

2
KL(Pn,X∥P̂X,ϵ) ≤

√
1

2
KL(Pn,X∥PX) +

√
1

2
log

1

1− ϵ
,

which completes the proof.

Proceeding with similar steps, define the quantities

B̂1 := M̂1 and B̂2 := max
2≤ℓ≤k

M̂ℓ for M̂ℓ :=

maxx∈X

∣∣∣∣ P̂X,ϵ(x)

P̂
(ℓ−1)
n,X (x)

− 1

∣∣∣∣ ℓ odd

maxy∈Y

∣∣∣∣ P̂Y,ϵ(y)

P̂
(ℓ−1)
n,Y (y)

− 1

∣∣∣∣ ℓ even
.

We must now establish an analog of Prop. 20.
Proposition 29. For any k ≥ 1, the following holds under the event S:

√
n

k∑
ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣ ≤ m∑

j=1

(
B̂1 |G(0)

n (h1,k1jℓ)|+ B̂2

k∑
ℓ=2

|G(0)

n (hℓ,k1jℓ)|

)
+mB̂2 ∥h∥∞

√
nk(k − 1)[B̂1 + B̂2(k + 1)/3].

Proof. This proof largely follows the argument of Prop. 20, while accounting for the misspecified
marginal error. Using again the notation hℓ,k := Cℓ . . . Ckh, it follows from Lem. 27 that, for odd ℓ,

√
nV̂ (ℓ−1)

n (hℓ,k) =

m∑
j=1

[
P̂X,ϵ

P̂ (ℓ−1)

n,X

(xj)− 1

]
Ĝ(ℓ−1)

n (hℓ,k1jℓ) ≤ M̂ℓ

m∑
j=1

∣∣∣Ĝ(ℓ−1)

n (hℓ,k 1jℓ)
∣∣∣ .

The bound above holds for ℓ even as well. Then, using (64) from Prop. 26 along with the triangle
inequality, we have that for ℓ ≥ 2,∣∣∣[P̂ (ℓ−1)

n − P](hℓ,k1jℓ)
∣∣∣ ≤ ∣∣∣P̂ (ℓ−2)

n − P](hℓ,k1jℓ)
∣∣∣+ ∣∣∣V̂ (ℓ−2)

n (hℓ,k1jℓ)
∣∣∣

which implies that∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣ (71)

≤
∣∣∣Ĝ(ℓ−2)

n (hℓ,k1jℓ)
∣∣∣+√

n
∣∣∣V̂ (ℓ−2)

n (hℓ,k1jℓ)
∣∣∣

≤
∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+√

n
∣∣∣V̂ (0)

n (hℓ,k1jℓ)
∣∣∣+ . . .+

√
n
∣∣∣V̂ (ℓ−2)

n (hℓ,k1jℓ)
∣∣∣

≤
∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+ M̂1

√
nP̂ (0)

n (|hℓ,k|1jℓ) + . . .+ M̂ℓ

√
nP̂ (ℓ−2)

n (|hℓ,k|1jℓ)

≤
∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+ 2 ∥h∥∞

√
n
[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1), (72)

39

by Lem. 18 and M̂1 ≤ B̂1 and M̂ℓ ≤ B̂2 for ℓ ≥ 2. The bound above holds trivially for ℓ = 1.
Summing these bounds over ℓ and j, we have that

√
n

k∑
ℓ=1

∣∣∣V̂ (ℓ−1)

n (hℓ,k)
∣∣∣

≤ M̂1

m∑
j=1

|G(0)

n (h1,k1jℓ)|+
k∑

ℓ=2

M̂ℓ

m∑
j=1

∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣

≤ B̂1

m∑
j=1

|G(0)

n (h1,k1jℓ)|+ B̂2

k∑
ℓ=2

m∑
j=1

∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣

≤ B̂1

m∑
j=1

|G(0)

n (h1,k1jℓ)|

+ B̂2

k∑
ℓ=2

m∑
j=1

(∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+ 2 ∥h∥∞

√
n
[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1)

)
apply (72)

=

m∑
j=1

(
B̂1 |G(0)

n (h1,k1jℓ)|+ B̂2

k∑
ℓ=2

|G(0)

n (hℓ,k1jℓ)|

)

+ 2mB̂2 ∥h∥∞
√
n

k∑
ℓ=2

[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1),

because |X | = m. We sum up the last term:

k∑
ℓ=2

[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1) = B̂1

k−1∑
ℓ=1

(k − ℓ) + B̂2

k−1∑
ℓ=1

ℓ(k − ℓ)

=
k(k − 1)

2

[
B̂1 + B̂2(k + 1)/3

]
,

which completes the proof.

D.5.2 Mean Squared Error Bound

Ultimately, we wish to construct an upper bound for

EP

[(
P̂ (k)

n (h)− P (h)
)2
1S

]
+ EP

[
(Pn(h)− P (h))

2
1Sc

]
, (73)

as the method returns Pn(h) when S is not satisfied. The first term will be controlled by intermediate
tools developed above. The second term that includes Sc is no different from the one analyzed in
Prop. 21. We handle the second term first. Recall from Prop. 21 that for any δ ∈ (0, 1),

EP

[
(Pn(h)− P (h))

2
1Sc

]
≤

4 ∥h∥2∞ min {2m(1− p⋆)
n, δ}+ 2 log(2/δ)

n
∥h∥2∞ 2m(1− p⋆)

n. (74)

Repeat the argument from the proof of Thm. 24: because 2[log2(2/δ) +m log(n+ 1)] ≥ log(m/δ)
and − log(1− p⋆) ≥ p⋆ ≥ p2⋆, we have that

n ≥ 2[log2(2/δ) +m log (n+ 1)]/p2⋆ =⇒ n ≥ log(δ/m)/ log(1− p⋆). (75)

This in turn implies that m(1− p⋆)
n ≤ δ, and gives as a condition on the sample size n. Further in

the analysis, we will set δ = (p̂⋆,ϵ/n)
4, so right-hand side of (74) can then be upper bounded further,

resulting in

EP

[
(Pn(h)− P (h))

2
1Sc

]
≤ 4 ∥h∥2∞ δ

(
2 +

log(2/δ)

n

)
= Õ

(
p̂4
⋆,ϵ

n4

)
,

40

a higher-order term compared to other components of the bound.

Next, we must control the left-hand side of (73). We perform the decomposition based on (68):

EP

[(
P̂ (k)

n (h)− P (h)
)2
1S

]
≤ EP

[
T 2
1 1S

]
+ 2EP

[∣∣∣T1T̂2

∣∣∣1S

]
+ EP

[
T̂ 2
2 1S

]
(76)

+O(k
√
ϵ) · EP

[(
|T1|+ |T̂2|

)
1S

]
+O(k2ϵ) (77)

for

T1 := [Pn − P](C1 . . . Ckh) and T̂2 :=

k∑
ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣ . (78)

Recall the events Eδ
1 and Eδ

2 and Eδ
3 from Appx. D.4. To perform this computation efficiently, we will

split the bounds on each term into two components. In particular, we will show that

• Under the event S ∩ Eδ
1 ∩ Eδ

2 :
∣∣∣T̂2

∣∣∣ ≤ T2 + E2,

• Under the event S\(Eδ
1 ∩ Eδ

2) :
∣∣∣T̂2

∣∣∣ ≤ T c
2 + Ec

2,

• Under the event S ∩ Eδ
3 : |T1| ≤ T1,

• Under the event S\Eδ
3 : |T1| ≤ T c

1 ,

where any term denoted with “E” will represent all error terms that include ϵ and will be written
in big-O notation. There are no errors for the bounds on T1, as this term does not depend on the
misspecified marginals. The idea is that for the “T2” terms we may reuse the bounds derived in
Appx. D.4 by simply replacing p⋆ with p̂⋆,ϵ. This is due to the fact that the dependence of the
analogous terms from Appx. D.4 depend on p⋆ only through Prop. 14; similarly, the corresponding
terms in this section depend on p̂⋆,ϵ through Prop. 28. We return to the terms in (76) and (77).

Decomposing on Eδ
3 will result in a bound of the form

O(k
√
ϵ) · EP [|T1|1S] ≤ O(k

√
ϵ) · (δT c

1 + T1) .

Decomposing on Eδ
1 ∩ Eδ

2 will result in a bounds of the form

EP

[
T̂ 2
2 1S

]
≤ 2δ(T c

2)
2 + T 2

2 + Õ
(
δ
(
(Ec

2)
2 + Ec

2T c
2

)
+
(
E2

2 + E2T2
))

O(k
√
ϵ) · EP

[
|T̂2|1S

]
≤ O(k

√
ϵ) · (δ (T c

2 + Ec
2) + T2 + E2) .

Finally, decomposing on Eδ
1 ∩ Eδ

2 ∩ Eδ
3 will result in a bound of the form

EP

[∣∣∣T1T̂2

∣∣∣1S

]
≤ 3δT c

1 T c
2 + T1T2 + Õ (δT c

1 E
c
2 + T1E2) .

The leading terms 2δ(T c
2)

2 + T 2
2 and 3δT c

1 T c
2 + T1T2 from both bounds should have the exact

same form as the terms in Lem. 22 and Lem. 23, with p⋆ replaced by p̂⋆,ϵ, thus retaining the same
dependence on (n, k). By setting δ = p̂4⋆,ϵ/n

4, we will achieve a similar result to Thm. 24, i.e., that

EP

[(
P̂ (k)

n (h)− P (h)
)2
1S

]
≤ σ2

k

n
+ Õ

(
k6

n3/2

)
+ Õ

(
(p̂⋆,ϵ/n)

4 (Ec
2(E

c
2 + T c

2)) + E2 (E2 + T2) + (p̂⋆,ϵ/n)
4T c

1 E
c
2 + T1E2

)
. (79)

+ Õ
(
k
√
ϵ
(
(p̂⋆,ϵ/n)

4T c
1 + T1 + (p̂⋆,ϵ/n)

4 (T c
2 + Ec

2) + T2 + E2

)
+ k2ϵ

)
. (80)

It remains to quantify the Õ terms by computing the order of the 6 constants (T2, E2, T c
2 , E

c
2, T1, T c

1).
We follow similar steps to Lem. 22 and Lem. 23 to achieve this.

41

Lemma 30. For δ = (p̂⋆,ϵ/n)
4, assume that n ≥ 8[log2(2/δ) + m log(n + 1)]/p̂2⋆,ϵ and ϵ ≤

1− exp
(
− p̂2

⋆,ϵ

8

)
. Then, it holds that

T c
2 = Õ

(
k2

p̂2
⋆,ϵ

(
n+ k

p̂2
⋆,ϵ

))
, Ec

2 = 0

T2 = Õ

(
k3

np̂2⋆,ϵ

)
, E2 = Õ

(
k3

p̂2
⋆,ϵ

(√
1
n log 1

1−ϵ + log 1
1−ϵ

))
.

Proof. The following computations are done under the event S. First, apply Prop. 29 to write

√
n
∣∣∣T̂2

∣∣∣ ≤ m∑
j=1

(
B̂1 |G(0)

n (h1,k 1jℓ)|+ B̂2

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)|

)
+mB̂2 ∥h∥∞ k(k − 1)[B̂1 + B̂2(k + 1)/3]. (81)

We decompose on the event Eδ
1 ∩ Eδ

2 .

Bound |T2| under the event S\(Eδ
1 ∩Eδ

2). In this case, we apply (69) from Prop. 28 to get B̂1 ≤ n

and B̂2 ≤ 1/p̂2⋆,ϵ, along with the universal bounds from Lem. 18:

1√
n
|G(0)

n (h1,k 1jℓ)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞

1√
n

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤ 2

k∑
ℓ=2

∥hℓ,k∥∞ ≤
k∑

ℓ=2

4(k − ℓ+ 1) ∥h∥∞ = 2k(k − 1) ∥h∥∞

so that by plugging into (81),∣∣∣T̂2

∣∣∣ ≤ ∥h∥∞ mk

[
4n+

k − 1

p̂2⋆,ϵ

(
n+ 2 +

k + 1

3p̂2⋆,ϵ

)]
︸ ︷︷ ︸

T c
2

+ 0︸︷︷︸
Ec

2

.

Bound |T2| under the event S ∩ Eδ
1 ∩ Eδ

2 . In this case, we may use that n ≥ 8/p̂2⋆,ϵ (because
[log2(2/δ) +m log(n+ 1)] ≥ 1 for δ ∈ (0, 1)) and apply (70) from Prop. 28 to get

max
{
B̂1, B̂2

}
≤ O

(
1

p̂⋆,ϵ

√
log 1

1−ϵ

)
+

2

p̂⋆,ϵ

√
2 log2(2/δ) + 2m log(n+ 1)

2n

The bounds based on Eδ
2 give

|G(0)

n (h1,k 1jℓ)| ≤
√
2 log

2mk

δ
2k ∥h∥∞

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤
k∑

ℓ=2

√
2 log

2mk

δ
2(k − ℓ+ 1) ∥h∥∞ ≤

√
2 log

2mk

δ
k(k − 1) ∥h∥∞ .

By plugging into (81), we can reuse the steps in the bound from (55) (for all terms without ϵ) to write∣∣∣T̂2

∣∣∣ ≤ 4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]
1−1{k=1}/2

np̂2⋆,ϵ
×[

p̂⋆,ϵ
√
2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)

]
+ E2,

so that

T2 =
4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]

1−1{k=1}/2

np̂2⋆,ϵ

×
[
p̂⋆,ϵ
√

2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)
]
.

42

We compute E2 by using that

max
{
B̂1, B̂2

}
≤ O

(
1

p̂⋆,ϵ

√
log 1

1−ϵ

)
+ Õ

(
1

p̂⋆,ϵ
√
n

)
|G(0)

n (h1,k 1jℓ)| ≤ Õ (k)

k∑
ℓ=2

|G(0)

n (hℓ,k 1jℓ)| ≤ Õ
(
k2
)
,

which gives

E2 = Õ
(

k3

p̂2
⋆,ϵ

(√
1
n log 1

1−ϵ + log 1
1−ϵ

))
.

We now make the corresponding argument for the term T1.

Lemma 31. For δ = (p̂⋆,ϵ/n)
4, it holds that

T c
1 = Õ(k), T1 = Õ

(
k√
n

)
.

Proof. The following computations are done under the event S.

Bound |T1| under the event S\Eδ
3 . Here we simply apply a universal bound on the empirical

process term:

1√
n
|G(0)

n (h1,k)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞ ,

so that T c
1 = 4k ∥h∥∞

Bound |T1| under the event S ∩ Eδ
3 . Now, we may use the definition of the event Eδ

3 to achieve

1√
n
|G(0)

n (h1,k)| ≤
√

2 log(2/δ)

n
2k ∥h∥∞ = T1.

Knowing that Ec
2 = 0, we simplify (79) and (79) to read

Õ
(
E2 (E2 + T2 + T1)

)
Õ
(
k
√
ϵ
(
(p̂⋆,ϵ/n)

4T c
1 + T1 + (p̂⋆,ϵ/n)

4T c
2 + T2 + E2

)
+ k2ϵ

)
.

We now combine the bounds from the previous two lemmas to compute (79) and (80) to state the
main result.

Theorem 32. Let Asm. 1 be true with error ϵ ∈ [0, 1). For a sequence of rebalanced distribu-
tions (P̂ (k)

n)k≥1, there exists an absolute constant C > 0 such that when n ≥ C[log2(2n/p̂⋆,ϵ) +

m log (n+ 1)]/min {p⋆, p̂⋆,ϵ}2, we have that

EP

[(
P̂ (k)

n (h)− P (h)
)2
1S

]
+ EP

[
(Pn(h)− P (h))

2
1Sc

]
≤ σ2

k

n
+ Õ

(
k6

n3/2

)
+ Õ

(
k4

p̂2⋆,ϵ

(√
1

n
log

1

1− ϵ
+ log

1

1− ϵ

)[
k2

p̂2⋆,ϵ

(√
1

n
log

1

1− ϵ
+ log

1

1− ϵ
+

1

n

)
+

1√
n

])

+ Õ

(
k2

[
√
ϵ

(
p̂4⋆,ϵ
n4

+
1√
n
+

p̂2⋆,ϵk

n4

(
n+

k2

p̂2⋆,ϵ

)
+

k2

p̂2⋆,ϵ

[
1

n
+

√
1

n
log

1

1− ϵ
+ log

1

1− ϵ

])
+ ϵ

])
.

43

E Experimental Details

We provide the full experimental details of the experimental results from Sec. 4. We report additional
evaluations on downstream tasks with linear probing and zero-shot retrieval. Finally, we give
illustrations of the sensitivity to misspecified marginals, and of the convergence to the given marginals.

E.1 Datasets

Pre-Training Data. The pre-training data was taken from the public ImageNet-Captions dataset
[Fang et al., 2013]. We subset the dataset by selecting the 250 classes that were most frequent in the
dataset, resulting in 174,594 images and associated Flickr captions. The exact images used and their
associated captions are given in the code supplement.

Evaluation Data. We perform zero-shot classification (as described in Sec. 4), zero-shot retrieval,
and linear probing with various image classification and image-caption datasets. We used the default
class captions (for classification) and default linear probing parameters from the CLIP Benchmark
repo. The datasets (test splits) used were:

• CIFAR-10: 10,000 colored natural images labeled with one of 10 classes.

• CIFAR-100: 10,000 colored natural images labeled with one of 100 classes.

• STL-10: 80,000 colored natural images labeled with one of 10 classes.

• MS-COCO: 41,000 colored natural images with associated captions.

• Flickr8k: 8,000 colored natural images with associated captions.

• Rendered SST2: 1,821 images of typed natural language with sentiment label (2 classes).

• VOC2007: 4,952 colored natural images labeled with one of 20 classes.

• FGVC Aircraft: 34,000 colored natural images labeled with one of 102 classes.

Evaluation scripts using the various embedding models (described below) are provided.

E.2 Model Specification and Hyperparameters

Architecture and Implementation. The models considered CLIP models [Radford et al., 2021], and
are specified by pairs of encoders (fθ, gθ), representing images and text, respectively. The encoders
decompose into fθ = f head

θ ◦ f base
θ (similarly for gθ) where f base

θ denotes a base image encoder and
f head
θ denotes a trainable head model. The head models are feed-forward networks with two hidden

layers, 256 hidden units, and 128-dimensional output representations. Their input dimensions may be
512 or 768, depending on whether a CLIP model or BERT/GPT-2 model is used as the base. For the
image base/foundation models, we use the open-source OpenCLIP implementation of the ViT-B/32
model with the laion2b s34b b79k model tag. For the text encoder, we use the encoder of
the variant of the ViT-B/32 with tag datacomp xl s13b b90k. For the other text encoders the
Huggingface implementations of GPT-2 and BERT were used.

Optimizer. For optimization, models were trained with stochastic gradient descent (SGD) with the
learning rate tuned along the grid

{
1−3, 3−3, 1−2, 3−2, 1−1

}
and a fixed weight decay parameter of

0.01. Momentum-variants such as Adam [Kingma and Ba, 2015] were not used to isolate the effect
of varying losses as described in Sec. 4.

E.3 Compute Environment

Experiments were run on a CPU/GPU workstation with 12 virtual cores, 126G of memory, and four
NVIDIA TITAN Xp GPUs with 12G memory each. The code was written in Python 3 and we use
PyTorch for automatic differentiation. The OpenCLIP and CLIP Benchmark repositories were used
for zero-shot evaluation.

44

https://github.com/mlfoundations/imagenet-captions
https://github.com/LAION-AI/CLIP_benchmark
https://github.com/mlfoundations/open_clip
https://huggingface.co/docs/transformers/en/model_doc/gpt2
https://huggingface.co/docs/transformers/en/model_doc/bert
https://github.com/mlfoundations/open_clip
https://github.com/LAION-AI/CLIP_benchmark

E.4 CLIP and Multi-CLIP

We considered in the contrastive learning example from Sec. 2 – see (6) in particular – a variant of
the CLIP objective in which either zero, or one, or more than one balancing iterations are performed
(see (6)), via optimizing

L(k)

n = −1

2

n∑
i=1

[logQ(k)

n (Xi, Yi) + logR(k)

n (Xi, Yi)] . (82)

This contrasts the single-iteration variant L(1)
n which in fact reduces to the original CLIP loss. Because

these iterations are applied in the objective, backpropagation occurs through each iteration.

In Fig. 3, we plot the zero-shot classification performance (in terms of average per-class recall) of the
variants trained on L(0)

n (the normalized initial measure, No Balancing), L(1)
n (the original CLIP loss,

CLIP balancing), and L(2)
n (the two-iteration CLIP loss, Multi-CLIP balancing). We also vary the

quality of the text encoder fθT , observing an overall accuracy trend of GPT-2 ≺ BERT ≺ CLIP across
variants, which is to be expected given the base representation quality of each model. Interestingly,
there is an improvement stemming from performing multiple balancing iterations across choices of
the text embedding, the batch size m, and the evaluation dataset.

E.5 Metadata Curation

We considered in the metadata curation example from Sec. 2 how to use balancing to adjust the entire
pre-training set, in the spirit of Xu et al. [2024]. The target marginal PY is selected by choosing a
threshold for which frequent keywords have their probability mass truncated, and the probability
measure is normalized to sum to one. In Fig. 4, we show the observed marginal Pn,Y and the target
marginal PY sorted in increasing order (left). The original marginal on Y has approximately 5 orders
of magnitude of difference between the most and least probable keyword. After balancing, the target
marginal has less than 2 orders of difference. To see how this affects downstream performance,
we plot the zero-shot classification accuracy over training iterations in Fig. 4 (right) when using
the original dataset (orange) and using the metadata-balanced dataset (blue). We observe moderate
improvement especially in the small batch regime (m = 512) when curating the dataset.

E.6 Additional Experiments

In this section, we provide 1) a synthetic data example that helps elucidate the role of the spectral
decomposition introduced in Sec. 3, and 2) additional evaluations on downstream tasks such as
zero-shot retrieval and linear probing. For the latter, we maintain the experimental settings as used
in the zero-shot classification example from Sec. 4 (Fig. 3). That is, we train variants of CLIP
models (see Sec. 2) on the ImageNet-Captions dataset [Fang et al., 2013]. As before, we use a fixed
image/text encoder as a base vector representation and compose it with a trainable feed-forward
neural network, i.e., fθ = f head

θ ◦ f base, for θ = θI (images) or θ = θT (text). For the base text
embeddings, we maintain three levels of model quality: GPT-2 [Radford et al., 2019], BERT [Devlin
et al., 2019], and CLIP-based encodings.

Baseline Comparisons. We present a synthetic data example to understand the role of the singular
values s2, . . . , sm and compare our approach to simple baselines that make use of (PX , PY). We
also consider misspecification of these target marginals, in that they are chosen by the user but are
not the marginal distributions of the data-generating distribution P . First, while one can verify by
hand that (14) is a distribution for which s2 = s, we construct a more general example for m ≥ 2.
We leave the construction to the end of this example. For controllable misspecification, we define
ϵ ∈ [0, 0.5] to be the misspecification level, so that the corrupted target marginals are set to be

P̃X := (1− ϵ)PX + ϵP̂X and P̃Y := (1− ϵ)PY + ϵP̂Y , (83)

where P̂X and P̂Y are drawn independently and randomly from the Dirichlet(1m) distribution
(i.e. uniformly over the probability simplex on m atoms). Finally, other than the empirical measure
Pn, we define one additional baseline; the importance weighted independently (IPWI) estimator is
defined as

P IPWI
n (x, y) =

P̃X(x)

Pn,X(x)

P̃Y (y)

Pn,Y (y)
Pn(x, y). (84)

45

0.0 0.2 0.4 0.6 0.8

Leading Singular Value s

10
4

10
3

10
2

M
ea

n
Sq

ua
re

d
Er

ro
r

Marginal Fitting Techniques under Misspecifiation

= 0.25 (IPWI)

= 0.125 (IPWI)

= 0.0 (IPWI)

= 0.25 (Bal.)

= 0.125 (Bal.)

= 0.0 (Bal.)

Emp. Measure

Figure 5: Baseline Comparisons across Dependence and Misspecification Levels. Each line refers
to a combination of an estimation method (the empirical probability measure Pn, the estimator P IPWI

n
from (84), or the balancing estimator P (k)

n for k = 8) and a noise level on the provided marginals
(see (83)). The y-axis shows the mean squared error of estimating a linear functional. The x-axis
represents the dependence level s = s2 (i.e. the leading singular value other than s1 = 1).

This estimator simply reweighs all cells of the empirical measure by the likelihood ratio from each
observed marginal to the target marginal. Note that the result may not even be a probability measure,
as it may not sum to one. Observe the comparative performance in (see Fig. 5). We notice in particular
that the naive P IPWI

n is outperformed by empirical measure uniformly over s, as by applying both
reweightings simultaneously, the estimator does not satisfy either marginal constraint. On the other
hand, under the maximum amount of target marginal corruption (ϵ = 0.5), the balancing-based
estimator suffers an approximately half-order of magnitude in MSE. When s ≈ 1, the MSE of the
balancing estimator decreases significantly. We hypothesize that this is because the data sources X
and Y are nearly a function of one another, and if this function is estimable to high precision by a
small amount of data, then a single marginal can identify the entire joint distribution via pushforward
calculations. That being said, it is important to note that the quantities uj and vj in (15) also depend
on s, so it is difficult to control the singular values without controlling the respective bases.

As for the construction of the probability mass function and test function, let Im and 1m×m denote
the identity matrix and matrix of ones in Rm×m. For any s ∈ (0, 1) and m ≥ 1, consider the
probability mass matrix P given by

P =
1

m

[
1

m
1m×m +s

(
Im − 1

m
1m×m

)]
.

The eigenvalues of the first matrix in the squared brackets are (1, 0, . . . , 0), as it is a rank 1 matrix for
which 1m is an eigenvector. The second matrix in the square brackets is the centering matrix (the
projection matrix that subtracts the mean of a vector’s components from the entire vector). Multiplied
by s, it has eigenvalues (0, s, . . . , s) where 0 is associated to the eigenvector 1m. Thus, the matrix in
its entirety has eigenvalues (1/m, s/m, . . . , s/m), where the scaling factor ensures that P sums to
one. The relation (13) holds for this choice of P and uniform marginals, with s2 = . . . = sm = s.
Thus, by tuning s, we may control the level of dependence between X and Y . Finally, because X and
Y are finite, we can also specify the test function h via an m×m table indexed by i (meaning xi)
and j (meaning yj). We let h(xi, yj) = |Zij | where the Zij are independently drawn from a standard
normal distribution. The resulting mean squared error is estimated with 200 seeds at n = 300.

Zero-Shot Retrieval. In this evaluation, we assess the ability of the learned representations to
match queries from one modality to their counterparts in another modality. We are given a test sets
Xtest = {x1, . . . , xM} of images and Ytest = {y1, . . . , yN} of texts in natural language. We are also
given a matrix of annotations A ∈ {0, 1}M×N where Aij = 1 if and only if yj is a “relevant” caption

46

0.0

0.1

0.2

0.3

M
SC

O
C

O
 (I

m
ag

e)

CLIP Text Embeddings

0.000

0.025

0.050

0.075

0.100

BERT Text Embeddings

0.00100

0.00125

0.00150

0.00175

0.00200
GPT-2 Text Embeddings

0.0

0.1

0.2

0.3

M
SC

O
C

O
 (T

ex
t)

0.00

0.05

0.10

0.002

0.004

0.006

0.008

0.0

0.2

0.4

Fl
ic

kr
-8

k
(Im

ag
e)

0.00

0.05

0.10

0.15

0.0045

0.0050

0.0055

0.0060

0.0065

Training Steps
0.0

0.2

0.4

Fl
ic

kr
-8

k
(T

ex
t)

Training Steps
0.00

0.05

0.10

0.15

0.20

Training Steps
0.005

0.010

0.015

0.020

Zeroshot Retrieval Performance (Recall @ 5)

No Balancing CLIP Balancing (k = 1) Multi-CLIP (k = 2)

Figure 6: Zero-Shot Retrieval Performance across Embeddings and Objectives. The three
vertical panels describe different choices of the text encoder fθT which increases in quality from left
to right; that is, pre-trained GPT-2, BERT, and CLIP embeddings, respectively. Rows indicate various
datasets, either MS-COCO or Flickr8k. evaluated under recall at K = 5 for image and text retrieval,
respectively. The y-axis of each plot indicates the metric (see (85)) for either image or text retrieval,
whereas the x-axis indicates training iterations at batch size 512.

47

0.60

0.62

0.64

R
en

de
re

d
SS

T-
2

CLIP Text Embeddings BERT Text Embeddings GPT-2 Text Embeddings

0.2

0.4

0.6

0.8

VO
C

20
07

Training Steps

0.2

0.3

0.4

FG
VC

 A
irc

ra
ft

Training Steps Training Steps

No Balancing CLIP Balancing (k = 1) Multi-CLIP (k = 2)

Figure 7: Linear Probe Performance across Embeddings and Objectives. The three vertical panels
describe different choices of the text encoder fθT which increases in quality from left to right; that
is, pre-trained GPT-2, BERT, and CLIP embeddings, respectively. Rows indicate various evaluation
datasets from Rendered SST2, VOC2007, and FGVC Aircraft. The y-axis of each plot indicates the
average per-class recall, whereas the x-axis indicates training iterations at batch size 512.

for image xi (and vice versa). Given a particular query y ∈ Ytest, we define the top-K neighborhood
of y as

NK(y; θ) = argmax
S⊆[M]:|S|=K

∑
i∈S

⟨fθI (xi), fθT (y)⟩,

i.e. the images in the test set that have the closest embeddings under the given model. Then, we may
define the average recall at K for image retrieval metric as

AverageRecallK(θ) :=
1

N

N∑
j=1

∑
i∈NK(yj ;θ)

Aij∑
i′∈[M] Ai′j

. (85)

In words, the metric evaluates the retrieval system’s ability to detect relevant items in the dataset, in
this case by comparing the closeness of the image-text representations. We can analogously define
the average recall at K for text retrieval metric by swapping the role of x and y above. The results
for both retrieval metrics on the MS-COCO [Lin et al., 2015] and Flickr8k [Hodosh et al., 2013]
benchmarks are given in Fig. 6.

Linear Probe. Here, we evaluate the quality of the model’s encoders by fine-tuning a single
linear layer on top of the learned representations for a classification task. In the case of linear
probing via image classification, we use only the image encoder fθI . We are given a training set
{(x1, c1), . . . , (xN , cN)} of image-label pairs, where each ci ∈ {1, . . . , C}. We fix the model

48

Figure 8: Empirical Marginals of CLIP Contrast Matrix. Depiction of the probability measures
Q(k)

n and R(k)
n as described in (82) from Sec. 2. The orange bars correspond to the observed marginal

after fitting to the target uniform distribution on the given iteration. Left: Q(0)
n and R(0)

n , where
neither marginal is set to uniform. Center: Q(1)

n and R(1)
n , which corresponds to the original CLIP

loss. Right: Q(2)
n and R(2)

n , which correspond to two iterations of the balancing procedure within the
loss. The blue bars are slightly non-uniform.

parameter θI and solve the regularized multinomial cross entropy (MCE) objective

min
W∈RC×r

[
LMCE(W) := − 1

N

N∑
i=1

[LogSoftmax(WfθI (xi))]ci +
λ

2
∥W∥2F

]
,

where λ > 0 is a regularization parameter, ∥·∥F denotes the Frobenius norm on RC×r and
LogSoftmax : RC → RC is given by LogSoftmax(z) = z − log

∑C
j=1 exp(zj). This results

in a classifier

g(x) := argmax
j∈[C]

[WfθI (x)]j ,

which can then be evaluated using standard accuracy metrics on a held-out test set. The image
classification results for the Rendered SST2 [Radford et al., 2021], VOC2007 [Everingham et al.,
2007], and FGVC Aircraft [Maji et al., 2013] benchmarks are given in Fig. 7.

Empirical Marginals in CLIP Balancing. To further clarify how the iterative balancing procedure
is baked into the CLIP losses, recall from (82) that the objectives decompose into two terms, which
depend on Q(k)

n and R(k)
n which differ only based on whether balancing to fit PY or to fit PX is

applied first, respectively. Thus, for any model parameterized by θ and any number of iterations k,
there are four marginal distributions of interest: Q(k)

θ,X , Q(k)

θ,Y , R(k)

θ,X , and R(k)

θ,Y . Based on the order
of iterations, we have that Q(1)

θ,Y = R(2)

θ,Y = PY , and R(1)

θ,X = Q(2)

θ,X = PX . This is illustrated in
Fig. 8. We see that after only a few iterations, both marginal distributions converge to the uniform
distribution.

49

F NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Theoretical claims, the focus of this paper, are supported with proofs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clarify that the setting studied has some dissimilarities with practice in
Sec. 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

50

Justification: This is done for all theoretical statements.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code is provided to reproduce the main results and an extensive experimental
details section is written.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

51

Answer: [Yes]
Justification: This is written in the public repo provided in Sec. 4.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we even give a list of the specific images of ImageNet used to train the
multimodal models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our evaluation metrics are shown with all seeds and their mean plotted in the
corresponding figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

52

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appx. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: NA

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is primarily theoretical and retrospective.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

53

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not release general-purpose models, only small-scale illustrative ones.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We site all software and models used in the study in Appx. E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

54

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a list of notebooks and scripts to illustrate our method and connect
it to existing software repositories such as OpenCLIP.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

55

	Introduction
	Data Balancing in Practice
	Theoretical Analysis of Variance Reduction
	Numerical Illustrations
	Conclusion
	Appendix
	 Appendix
	Notation
	Linear Operators and Variance Reduction
	Singular Value Decomposition
	Proof of Main Results

	From Information Projections to Data Balancing
	Balancing as Information Projections
	Projection in KL-Divergence
	Projection in Reverse KL-Divergence
	Projection in Chi-Squared-Divergence

	Proof of Main Results

	Statistical Analysis of Balancing Estimators
	Recursion of Estimation Error
	Technical Tools & Intermediate Results
	Analysis of Higher-Order Term
	Proof of Main Results
	Misspecified Marginal Distributions
	Intermediate Results
	Mean Squared Error Bound

	Experimental Details
	Datasets
	Model Specification and Hyperparameters
	Compute Environment
	CLIP and Multi-CLIP
	Metadata Curation
	Additional Experiments

	NeurIPS Paper Checklist

