
IMDL-BenCo: A Comprehensive Benchmark and
Codebase for Image Manipulation Detection &

Localization

Xiaochen Ma1†, Xuekang Zhu1†, Lei Su1†, Bo Du1†, Zhuohang Jiang1†, Bingkui Tong1†,
Zeyu Lei1,2†, Xinyu Yang1†, Chi-Man Pun2, Jiancheng Lv1,3, Jizhe Zhou1,3∗

1College of Computer Science, Sichuan University, China
2Department of Computer and Information Science, University of Macao, Macao SAR

3Engineering Research Center of Machine Learning and Industry Intelligence, MOE, China

Abstract

A comprehensive benchmark is yet to be established in the Image Manipulation
Detection & Localization (IMDL) field. The absence of such a benchmark leads
to insufficient and misleading model evaluations, severely undermining the devel-
opment of this field. However, the scarcity of open-sourced baseline models and
inconsistent training and evaluation protocols make conducting rigorous experi-
ments and faithful comparisons among IMDL models challenging. To address these
challenges, we introduce IMDL-BenCo, the first comprehensive IMDL benchmark
and modular codebase. IMDL-BenCo: i) decomposes the IMDL framework into
standardized, reusable components and revises the model construction pipeline,
improving coding efficiency and customization flexibility; ii) fully implements or
incorporates training code for state-of-the-art models to establish a comprehensive
IMDL benchmark; and iii) conducts deep analysis based on the established bench-
mark and codebase, offering new insights into IMDL model architecture, dataset
characteristics, and evaluation standards. Specifically, IMDL-BenCo includes
common processing algorithms, 8 state-of-the-art IMDL models (1 of which are
reproduced from scratch), 2 sets of standard training and evaluation protocols, 15
GPU-accelerated evaluation metrics, and 3 kinds of robustness evaluation. This
benchmark and codebase represent a significant leap forward in calibrating the
current progress in the IMDL field and inspiring future breakthroughs. Code is
available at: https://github.com/scu-zjz/IMDLBenCo.

1 Introduction

“Experimentation is the ultimate arbiter of scientific truth." - Richard Feynman.
The empowered image manipulation or generation models drive the Image Manipulation Detection
& Localization (IMDL) task to the forefront of information forensics and security [24, 36]. While
the task is occasionally referred to as "forgery detection" [15, 13] or "tamper detection"[32, 31] in
literature, the consensus now favors the term IMDL [13] as the most apt descriptor for this study area.
The scope of "manipulation" within IMDL bounds to partial image alterations that yield semantic
discrepancies from the original content [38]. It does not pertain to purely generated images (e.g.,
images generated from pure text) or the application of image processing techniques that introduce
noise or other non-semantical changes without altering the underlying meaning of the image [5].

†Equal contribution.
∗Corresponding author: Jizhe Zhou (jzzhou@scu.edu.cn)

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/scu-zjz/IMDLBenCo
mailto:jzzhou@scu.edu.cn


The terms "detection and localization" denote an IMDL model’s dual responsibility: to conduct
both image-level and pixel-level assessments. This involves a binary classification at the image
level, discerning whether an input image is manipulated or authentic, and a segmentation task at the
pixel level, depicting the exact manipulated areas through a mask. In short, an IMDL model shall
identify semantically significant image alterations and deliver a twofold outcome: a class label and a
manipulation mask.

Despite the rapid success of deep neural networks in the IMDL fields [10, 45, 11], existing models suf-
fer from inconsistent training and evaluation protocols, supported by Tables in Appendix A.1. These
inconsistencies result in incompatible and unfair comparisons, yielding insufficient and misleading
experimental outcomes. Hence, establishing a unified and comprehensive benchmark is the foremost
concern in the IMDL field. However, constructing this benchmark is far more than straightforward
protocol unification or simply model re-training. First, the training code for most state-of-the-art
(SoTA) works is not publicly available, and the source code for some SoTA works is totally unre-
leased [27]. Second, IMDL models commonly incorporate diverse low-level features [43, 4, 13]
and complex loss functions, requiring highly customized model architecture and decoupled pipeline
design for efficient reproduction. Existing frameworks, like OpenMMLab2 and Detectron23, heavily
rely on the registry mechanism and tightly coupled pipelines. This conflict leads to severe efficiency
issues while reproducing IMDL models under existing frameworks and results in monolithic model
architecture with extremely high coding load and low scalability. Consequently, a comprehensive
IMDL benchmark is yet to be built.

To address this issue, we introduce IMDL-BenCo, the first comprehensive IMDL benchmark and
modular codebase. IMDL-BenCo: i) features a modular codebase with four components: data loader,
model zoo, training script, and evaluator; the model zoo contains customizable model architecture
includes SoTA models and backbone models. The loss design is also isolated within the model zoo,
while other components are standardized by the interface and are highly reusable; this approach
mitigates conflicts between model customization and coding efficiency; ii) fully implements or
incorporates training code for 8 SoTA IMDL models (See Table 1) and establishes a comprehensive
benchmark with 2 sets of standard training and evaluation protocols, 15 GPU-accelerated evaluation
metrics, and 3 kinds of robustness evaluation, and iii) conducts in-depth analysis based on the
established benchmark and codebase, offering new insights into IMDL model architecture, dataset
characteristics, and evaluation standards. This benchmark and codebase represent a significant leap
forward in calibrating the current progress in the IMDL field and can inspire future breakthroughs.

2 Related Works

IMDL Model Architectures. The key to IMDL is identifying the artifacts created by manipulation.
Artifacts are considered manifest on the low-level feature space. Therefore, almost all existing
IMDL models share the "backbone network + low-level feature extractor" paradigm. For example,
SPAN [18] and ManTra-Net [43] use VGG [34] as the backbone of their models and combine
SRM [49] and BayarConv [1] filters to obtain low-level features of the image. MVSS-Net [4]
combines a Sobel [35] operator, which extracts edge information, and a BayarConv on its ResNet-
50 [16] backbone to extract image noise. Detailed information about each model can be found in
Table 1. Various low-level feature extractors lead to various loss functions and extremely customized
model architectures. As a result, reproducing IMDL models within the existing frameworks is
inefficient. The high coupling between various loss functions and training architectures also makes it
extremely difficult to extend different model training frameworks. The differences between training
frameworks further increase the difficulty of model reproduction. This tight coupling also severely
impacts algorithm innovation and rapid iteration.

Inconsistent Training and Evaluation Protocols. Besides model reproducing difficulties, so far,
there exist multiple strikingly different protocols for training and evaluating IMDL models. MVSS-
Net, CAT-Net, and TruFor were pre-trained on the ImageNet [6] dataset. SPAN [18], PSCC-Net [25],
CAT-Net [22], and TruFor [22] were trained using synthetic datasets. Additionally, TruFor used
a large number of original images from popular photo-sharing websites Flickr and DPReview to
train its Noiseprint++ Extractor. MVSS-Net [4] and IML-ViT [27] were trained on the CASIAv2 [8]

2https://openmmlab.com/
3https://github.com/facebookresearch/detectron2

2

https://openmmlab.com/
https://github.com/facebookresearch/detectron2


Table 1: Summary of the compared IMDL models

Model Name Venue Backbone Feature Extractor Repositories Training Code
ManTra-Net[43] CVPR19 VGG[34] BayarConv+SRM Filter https://github.com/RonyAbecidan/ManTraNet-pytorch ×

MVSS-Net[7] ICCV21 ResNet-50[16] BayarConv+Sobel operator https://github.com/dong03/MVSS-Net ×
CAT-Net[22] IJCV22 HRNet[39] High-Pass Filter https://github.com/mjkwon2021/CAT-Net ✓

ObjectFormer[40] CVPR22 Transformer [37] High-Pass Filter Unpublished code, reproduced by us ×
PSCC-Net[25] TCSVT22 HRNet[39] Multi-Resolution Convolution Streams https://github.com/proteus1991/PSCC-Net ✓
NCL-IML[47] ICCV23 ResNet-101[16] Contrastive Learning https://github.com/Knightzjz/NCL-IML ✓

TruFor[13] CVPR23 SegFormer[44] Contrastive Learning https://github.com/grip-unina/TruFor ×
IML-ViT[27] Arxiv Vision Transformer[9] - https://github.com/SunnyHaze/IML-ViT ✓

dataset. on the other hand, NCL [47] did not use pre-training and was trained on the NIST16 [12]
dataset. The detailed training and evaluation protocols for the models are explained in Appendix
A.1. Considering the IMDL benchmark datasets are all tiny-sized (a few hundred to a few thousand
images) [47], the substantial differences in training datasets make it inevitable that models using
large training sets or pre-training will perform exceptionally well on other evaluation sets, posing
a great challenge to the fairness of model performance evaluation. Besides, as shown in Table 1,
most models do not fully open-source their code. Their results are hard to calibrate and can be highly
misleading for new IMDL researchers.

Exisiting IMDL Surveys and Benchmark. Although IMDL surveys [28, 46] already noticed the
protocol inconsistency and model reproducing difficulties in IMDL research, rare efforts have been
devoted to addressing this issue. Existing surveys often rely on independently designed models with
unique training strategies and datasets, leading to biases in reported results. Moreover, as far as
we know, there is no comprehensive benchmark available to ensure fair and consistent evaluation
of IMDL models. This absence of a unified benchmark leads to misleading, unfaithful model
assessments and undermines the overall progress in the IMDL field.

3 Our Codebase

This section introduces our modular, research-oriented, and user-friendly codebase implemented with
PyTorch4. As shown in Figure 1, it includes four key components: data loader, model zoo, training
script, and evaluator. Our codebase strikes a balance between providing a standardized workflow for
IMDL tasks and offering users extensive customization options to meet their specific needs.

3.1 Data Loader

The Data loader primarily handles dataset arrangement, augmentation, and transformation processes.

Dataset Management. We provide conversion scripts for each dataset to rearrange them into a set of
JSON files. Subsequent training and evaluation can be carried out based on these JSON files.

Augmentations and Transformations. Due to the need for expert annotations and substantial manual
effort, IMDL datasets are often very small, making it difficult to meet the demands of increasingly
larger models. Therefore, data augmentation is essential. Additionally, it is crucial to ensure that the
input modalities and image shapes meet existing models’ requirements. Our data loader is designed
with the following sequence of transformations: 1) IMDL-specific transforms: Inspired by MVSS-
Net [4], we implemented naive inpainting and naive copy-move transforms, which can effectively
enhance performance without extra datasets. 2) Common transforms: This includes typical visual
transformations such as flipping, rotating, and random brightness adjustments, implemented using the
Albumentations [3] library. 3) Post transforms: Some models require additional information other
than RGB modality. For instance, CAT-Net [22] needs specific metadata unique to the JPEG format,
which can be further obtained from the RGB domain from augmented images with callback functions.
4) Shape transforms: This includes zero-padding [27], cropping and resizing to ensure uniform
input shapes. Additionally, the Evaluators can automatically adapt to different shaping strategies to
complete metric calculations.

4https://pytorch.org/

3

https://github.com/RonyAbecidan/ManTraNet-pytorch
https://github.com/dong03/MVSS-Net
https://github.com/mjkwon2021/CAT-Net
https://github.com/proteus1991/PSCC-Net
https://github.com/Knightzjz/NCL-IML
https://github.com/grip-unina/TruFor
https://github.com/SunnyHaze/IML-ViT
https://pytorch.org/


Figure 1: Overview of the paradigm for IMDL-BenCo.

3.2 Model Zoo

The model zoo currently consists of 8 SoTA models, 6 backbone models built with out-of-the-box
vision backbones and 5 feature extractor modules commonly used for IMDL tasks. It is important to
emphasize that we aim for all models to be trained using the same training script (standardization),
while also being adaptable to all SoTA IMDL models (customization). As shown in Figure 1, we
integrate the loss function computation within the forward function of the model. Through a unified
interface, we pass in the required information, such as images and masks, and output the prediction
results, the loss for backpropagation, and any losses, intermediate features, and images that need to
be visualized. Therefore, for new IMDL methods, users only need to add the model scripts with loss
design into the model zoo, and it will seamlessly integrate with all other components in IMDL-BenCo.
By effectively reproducing current SoTA models using this framework, we demonstrate that we have
successfully balanced the conflict between standardization and customization.

1) SoTA models. As shown in Table 1, we have faithfully reproduced 8 mainstream IMDL SoTA
models, adhering to the settings from the original work. Wherever possible, we used the publicly
available code, making only the necessary interface modifications. For models lacking publicly
available code, we implemented them based on the settings described in their respective papers.
Implementation details for each model are listed in Appendix A.3. 2) Backbone models: As
classification and segmentation tasks, mainstream IMDL algorithms make extensive use of existing
visual backbones, and the performance of these backbones also impacts the performance of the
implemented algorithms. Therefore, we have adapted widely used vision backbones including
ResNet [16], U-Net [30], ViT [9], Swin-Transformer [26], and SegFormer [44] into IMDL-BenCo
as backbones. 3) Feature extractor modules: Currently, several standard feature extractors are
widely used in IMDL tasks. We have implemented 5 mainstream feature extractors as nn.module,
which include discrete cosine transform (DCT), fast Fourier transform (FFT) [2], Sobel operator [35],
BayarConv [1], and SRM filter [49]—allowing seamless integration with our backbone models with
registry mechanism for managing large-scale experiments or import directly for convenient use in
subsequent research.

3.3 Training Scripts

The training scripts are the entry point for using IMDL-BenCo, integrating other components to
perform specific functions. It can efficiently automate tasks such as model training, metrics evaluation,
visualization, GradCAM analysing [33], and complexity computing based on configuration files (e.g.,
JSON, command line, or YAML). To avoid the high coupling of training pipelines seen in other
frameworks (e.g., Open MM Lab often requires modifying Python package functions to customize
features), we provide a code generator that allows users to create highly customized training scripts
while still leveraging IMDL-BenCo’s efficient components to enhance development efficiency.

4



3.4 Evaluators

Evaluation metrics are crucial for assessing the performance of IMDL models. Yet, existing methods
face two key issues: 1) metrics are often unclear, with terms like optimal-F1 [4], permute-F1 [22, 13],
micro-F1 and macro-F15 used as F1 score anonymously, and 2) most open-source codes compute
metrics on the CPU, resulting in slow processing speeds.

To address these problems, we developed GPU-accelerated evaluators in PyTorch, integrated as
standard metrics. Each evaluator computes a specific metric, including image-level (detection) F1
score, AUC (area-under-curve), accuracy; and pixel-level (localization) F1 score, AUC, accuracy,
and IOU (Intersection over Union). All algorithms automatically adapt to shape transformations in
the data loader, providing added convenience. We also explicitly implemented derived algorithms
such as inverse-F1 and permute-F1 to evaluate their tendency for overestimation, as demonstrated in
Section 5.3. This underscores the importance of precise and transparent metric selection in future
work to ensure fair and consistent comparisons.

We experimented with 12,554 images from the CASIAv2 dataset and four NVIDIA 4090 GPUs
and tested our evaluators’ time efficiency with nn.Identity as the model, which incurs negligible
computation time. The results, shown in Table 2, indicate that our algorithms significantly reduce
metric evaluation time, providing a faster and more reliable tool for large-scale IMDL tasks.

Table 2: Evaluator Accelerate Comparison on 12,554 images (HH:MM:SS)

Resolution Method Pixel-level Image-level
F1 AUC ACC IOU F1 AUC ACC

512×512 Sklearn 0:07:50 0:07:33 0:07:32 0:07:26 0:00:43 0:00:34 0:00:42
IMDL-BenCo (Ours) 0:00:26 0:00:27 0:00:31 0:00:29 0:00:29 0:00:29 0:00:32

1024×1024 Sklearn 0:14:03 0:14:51 0:14:07 0:17:09 0:02:41 0:02:31 0:02:44
IMDL-BenCo (Ours) 0:01:32 0:01:31 0:01:37 0:01:45 0:01:38 0:01:22 0:01:29

4 Our Benchmark

4.1 Benchmark Settings

Datasets. Our benchmark includes eight publicly available datasets frequently used in the IMDL
field: CASIA[8], Fantastic Reality[21], IMD2020[29], NIST16[12], Columbia[17], COVERAGE[42],
tampered COCO[22], tampered RAISE[22]. Details of each dataset are shown in Appendix A.2.

Evaluation Metrics. Since manipulated regions are often smaller than authentic ones, the pixel-level
F1 score is widely used as a suitable metric for evaluating model performance. We assess each
model’s pixel-level F1 score using a fixed threshold of 0.5 across two protocols. We also evaluate all
models using pixel-level AUC and IOU metrics. For models with a detection head, we additionally
report image-level F1 scores. Lastly, we present robustness test results for the pixel-level F1 score
under conditions of Gaussian blur, Gaussian noise, and JPEG compression.

Hardware Configurations. The experiments are conducted on three distinct servers with two AMD
EPYC 7542 CPUs and 128G RAM, and contain 4×NVIDIA A40 GPUs, 6×NVIDIA 3090 GPUs,
and 4×NVIDIA 4090 GPUs, respectively.

Models and Hyperparameters. Our benchmark selects eight SoTA methods in the IMDL field as the
initial batch of implemented methods. The models are: Mantra-Net[43], MVSS-Net[4], CAT-Net[22],
ObjectFormer[40], PSCC-Net[25], NCL-IML[47], Trufor[13], and IML-ViT[27]. The details of our
minor modification, settings, and hyperparameters can be found in Appendix A.3.

4.2 Benchmark Protocols

The imbalance in scale and quality of existing public datasets has led to inconsistencies in the training
and evaluation protocols of IMDL methods. This makes it difficult to achieve fair and convenient
comparisons between existing methods. To this end, we select two reasonable and widely used
protocols: Protocol-MVSS, proposed by MVSS-Net[4], where the model is trained only on the

5https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#
sklearn.metrics.f1_score

5

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score


CASIAv2 dataset and then tested directly on other datasets without fine-tuning. The CASIAv2
dataset is of moderate size but high quality, making this protocol a good measure of the model’s
generalization ability. Protocol-CAT, proposed by CAT-Net[22], where the model is trained on a
mixed dataset consisting of CASIAv2, Fantastic Reality, IMD2020, tampered COCO, and tampered
RAISE. For each epoch, a fixed number of images are randomly sampled for training, and the model
is then tested directly on other datasets without fine-tuning. This mixed dataset includes various
types of tampering and a large number of manipulated images, allowing the model to demonstrate its
learning capabilities effectively.

Specifically, in Protocol-MVSS, we do not use authentic images during training for methods that do
not have a detection head. While in Protocol-CAT, we do not make this distinction. Additionally,
we use the recommended image scaling sizes specified in each paper. We also apply consistent
data augmentation techniques for all methods, such as flipping, blurring, compression and simple
copy-move and inpainting operations implemented using OpenCV6.

4.3 Our Benchmark Results

For Protocol-MVSS, we report the F1 scores on the COVERAGE, Columbia, NIST16, CASIAv1,
and IMD2020 datasets. For Protocol-CAT, we exclude IMD2020 as it is included in the training
process. The pixel-level F1 scores and image-level F1 scores are presented in Table 3 and Table
4, respectively. The pixel-level AUC and IoU can be found in Appendix A.4. There are some
discrepancies between the performance of our reproduced models and the results reported in the
original papers. Additionally, some models showed limited performance when compared under the
same protocol. We also depict the robustness test under Protocol-MVSS in Figure 2. We observed
significant robustness variations in some models compared to their original papers, demonstrating the
necessity and fidelity of a unified framework.

Figure 2: Results for robustness evaluation under Protocol-MVSS.

Table 3: Pixel-level Performance. DH means the model includes a detection head. When testing
pixel-level F1 scores using the datasets below, we did not use authentic images. The best and second-
best performances for each dataset under each protocol are highlighted in bold and underlined.

Protocol Method DH Size COVERAGE Columbia NIST16 CASIAv1 IMD2020 Average

Protocol-MVSS

Mantra-Net[43] × 256×256 0.090 0.243 0.104 0.125 0.055 0.123
MVSS-Net[4] ✓ 512×512 0.259 0.386 0.246 0.534 0.279 0.341
CAT-Net[22] × 512×512 0.296 0.584 0.269 0.581 0.273 0.401

ObjectFormer[40] × 224×224 0.294 0.336 0.173 0.429 0.173 0.281
PSCC-Net[25] ✓ 256×256 0.231 0.604 0.214 0.378 0.235 0.333
NCL-IML[47] × 512×512 0.225 0.446 0.260 0.502 0.237 0.334

Trufor[13] ✓ 512×512 0.419 0.865 0.324 0.721 0.322 0.530
IML-ViT[27] × 1024×1024 0.435 0.780 0.331 0.721 0.327 0.519

Protocol-CAT

Mantra-Net[43] × 256×256 0.196 0.462 0.193 0.327 × 0.295
MVSS-Net[4] ✓ 512×512 0.498 0.739 0.348 0.603 × 0.547
CAT-Net[22] × 512×512 0.427 0.915 0.252 0.808 × 0.601

ObjectFormer[40] × 224×224 0.257 0.732 0.268 0.531 × 0.447
PSCC-Net[25] ✓ 256×256 0.379 0.864 0.369 0.592 × 0.551
NCL-IML[47] × 512×512 0.320 0.657 0.315 0.570 × 0.467

Trufor[13] ✓ 512×512 0.457 0.885 0.348 0.818 × 0.627
IML-ViT[27] × 1024×1024 0.654 0.948 0.501 0.795 × 0.725

6https://opencv.org/

6

https://opencv.org/


Table 4: Image-level Performance. CASIAv1 is removed because it is missing authentic images.
Protocol Method Size COVERAGE Columbia NIST16 IMD2020 Average

Protocol-MVSS
MVSS-Net[4] 512×512 0.567 0.648 0.562 0.745 0.631
PSCC-Net[25] 256×256 0.533 0.747 0.521 0.684 0.621

Trufor[13] 512×512 0.524 0.799 0.531 0.538 0.598

Protocol-CAT
MVSS-Net[4] 512×512 0.666 0.650 0.585 × 0.634
PSCC-Net[25] 256×256 0.525 0.722 0.523 × 0.590

Trufor[13] 512×512 0.645 0.934 0.638 × 0.739

Table 5: Backbone parameters and floating-point operations per second (FLOPs). In ViT-B/16-
8-cat, "8" refers to the first eight layers of transformer blocks, while "cat" denotes the concatenation
of the feature and original image feature along the sequence dimension before input into the blocks.

Backbone ResNet151[16] U-Net[30] ViT-B/16[9] Swin-B[26] ViT-B/16-8[9] ViT-B/16-8-cat[9] SegFormer-B2[44]

Parameters 48.030M 31.038M 89.343M 90.515M 60.991M 62.368M 25.764M
FLOPs 65.144G 197.632G 92.026G 88.565G 62.975G 124.928G 21.562G

5 Experiments and Analysis

Our codebase and benchmark unify testing and training protocols for IMDL models. Despite this
unification, the IMDL task also retains multiple unique and critical characteristics compared to
other detection or segmentation tasks, notably the reliance on the "backbone network + low-level
feature extractor" paradigm, benchmark datasets with random splits, and various evaluation metrics.
Accordingly, we further investigate and deeply analyze 4 widely concerned but less-explored questions
in sequence, including: 1) Is the low-level feature extractor a must in IMDL? 2) Which backbone
architecture best fits the IMDL task? 3) Do random split training and testing datasets affect the model
performances? 4) What metrics mostly represent the model’s practical behavior?

Through extensive experiments, we are the first to answer the above question with evidential facts and
provide new critical insights into model design, dataset cleansing, and metrics for the IMDL field.

5.1 Low-level Feature Extractors and Backbones

As shown in Table 1, prevailing IMDL approaches heavily rely on feature extractors to detect
manipulation traces. However, few articles specifically analyze the advantages of different extractors.
In this section, we combine the backbone models implemented in the model zoo (see Section 3.2)
with different feature extractor modules to explore the performance of each feature extractor and their
compatibility with the backbone. The complexity of each combined model is shown in Table 5.

All combined models are trained on the CASIAv2 dataset for 200 epochs with an image size of
512×512. Detailed experimental settings can be found in Appendix A.7.1. They are then evaluated
on four distinct datasets—CASIAv1, Columbia, NIST16, Coverage, and IMD2020—to assess their
generalization capabilities. The average F1 score for each setting across the four datasets is reported
in Table 6.

Experiments indicate that specific feature extractors, such as BayarConv and Sobel, can negatively
impact model performance. In contrast, the ResNet model, when equipped with DCT, FFT, and
SRM feature extractors, shows improved performance. The ViT model, when equipped with feature
extractors, tends to underfit and may require more epochs to converge. A better feature fusion

Table 6: Comparison of Generalization Performance Across Different Backbones and Feature
Extractors. The Average F1 Score represents the mean F1 score across five datasets.

Backbone ResNet151[16] U-Net[30]

Feature Extractor None Bayar DCT FFT Sobel SRM None Bayar. DCT FFT Sobel SRM
Average F1 Score 0.354 0.227 0.343 0.358 0.207 0.355 0.015 0.018 0.013 0.013 0.015 0.016

Backbone SegFormer-B2[44] Swin-B[26]

Feature Extractor None Bayar DCT FFT Sobel SRM None Bayar. DCT FFT Sobel SRM
Average F1 Score 0.466 0.143 0.364 0.364 0.147 0.363 0.538 0.214 0.472 0.447 0.225 0.395

Backbone ViT-B/16[9] ViT-B/16-8[9]

Feature Extractor None Bayar DCT FFT Sobel SRM None Bayar. DCT FFT Sobel SRM
Average F1 Score 0.295 0.068 0.228 0.241 0.042 0.254 0.213 0.133 0.151 0.188 0.128 0.216

7



Figure 3: An instance of label leakage in NIST16. There is almost no visible difference between
these images and their masks. When split into training and testing datasets, the test images are easily
located by the model, indicating an overestimation of model performance.

Table 7: Pixel-level performance of the Models on NIST16 and NIST16-C. The pixel-level F1
scores for all models on the NIST16-C dataset stay mostly the same as the original NIST16 dataset.

Protocol Dataset ManTra-Net[43] MVSS-Net[7] CAT-Net[22] ObjectFormer[40] PSCC-Net[25] NCL-IML[47] Trufor[13] IML-ViT[27]

Protocol-MVSS NIST16 0.104 0.2461 0.2692 0.1732 0.2141 0.2599 0.3241 0.331
NIST16-C 0.06493 0.2404 0.2734 0.1922 0.217 0.2469 0.291 0.2657

Protocol-CAT NIST16 0.1837 0.3477 0.2522 0.2682 0.3689 0.3148 0.348 0.5013
NIST16-C 0.1629 0.333 0.3318 0.2637 0.3476 0.301 0.344 0.4404

method might eliminate the current issues with the ViT model. For the Swin Transformer, adding
feature extractors can lead to overfitting, while the performance of the Segformer generally degrades.
Detailed discussion and experiment results are detailed in Appendix A.7.2.

Necessity for Feature Extractors. In short, BayarConv and Sobel are not suitable for IMDL tasks.
Appropriate low-level feature extractors, such as DCT, FFT, and SRM, can enhance the performance
of the ResNet model. However, all feature extractors may impede convergence for ViT and its variants,
cause overfitting in Swin Transformer, and lead to an overall performance decline in SegFormer.
Therefore, low-level feature extractors are not necessities in IMDL.

Backbone Fitness. As shown in Table 6, Swin Transformer and Segformer demonstrate robust
performance on the IMDL task, outperforming ResNet and ViT. The U-Net architecture is not
well-suited for this task.

5.2 Dataset Bias and Cleansing Methods

Dataset Bias. Through our benchmark, we find that comparing the model performance under our
protocol with the model performance after fine-tuning in their paper, on every model, a significant
performance decline is observed on the NIST16 dataset. However, such a huge decline does not
occur on other benchmark datasets. After thorough analysis, we find the NIST16 dataset contains
"extremely similar" manipulation patterns. Then, when these extremely similar images are randomly
split into the training and testing sets, models can effectively locate the manipulation regions by
memorizing the extremely similar training samples. We refer to this critical dataset bias as "label
leakage." Figure 3 illustrates an instance of label leakage in the NIST16 dataset.

Dataset Cleansing. To enhance the reliability of NIST16 for evaluation, we introduce a new dataset,
NIST16-C7, created by applying a filtering method based on Structural Similarity (SSIM) [41].
This process helps eliminate overly similar images, reduce dataset bias, and prevent performance
overestimation caused by label leakage. Further details for our analysis and the cleansing procedure
can be found in Appendix A.7.3.

We conducted extensive benchmarking on NIST16-C, and the test results are shown in Table 7. This
demonstrates that we have eliminated redundant data in the NIST16 dataset, addressing label leakage.
As a result, models can now focus on learning the underlying features of manipulations.

5.3 Evaluation Metrics Selection

Controversial F1 Scores. The F1 metric has multiple variations with different computation
equations, such as invert-F1 and permute-F1[20, 22, 13]. Invert-F1 is the value obtained by
calculating F1 between the inverted prediction results and the original mask. Permute-F1 is
the maximum value between original F1 and invert-F1. The formula is Permute-F1(G,P ) =

7NIST16-C is available here: https://github.com/DSLJDI/NIST16-data-set-deduplication

8

https://github.com/DSLJDI/NIST16-data-set-deduplication


Figure 4: Controversial permuted metrics. When the model’s predictions are completely wrong, the
F1 score should theoretically be 0.00.

max(F1(G,P ), Invert-F1(G,P )), where G is the ground truth and P is the predicted mask. As
shown in Figure 4, when the white area of the mask is large, and there is a significant deviation
between the model’s prediction and the mask, the invert-F1 score is much higher than the F1 score.
This metric affects the fairness of the evaluation.

Furthermore, using parameters such as "macro", "micro", and "weighted" when calculating F1 scores
via the sklearn library is inappropriate, as it artificially inflates our F1 metrics, which is unjustified. We
further analyze these misleading F1 metrics in Appendix A.7.4. Mixing these F1 scores anonymously
would lead to significant fairness issues. In summary, we contend that using the F1 score with the
"binary" parameter for calculation is more scientific and rigorous. We hope that future research will
uniformly adopt this standard. Additionally, we discuss the current issue of AUC being overestimated
in the Appendix A.7.5.

6 Conclusions

In conclusion, IMDL-BenCo marks a significant advancement in the field of Image Manipula-
tion Detection & Localization. By offering a comprehensive benchmark and a modular codebase,
IMDL-BenCo enhances coding efficiency and customization flexibility, thus facilitating rigorous
experimentation and fair comparison of IMDL models. Besides, IMDL-BenCo inspires future break-
throughs by providing a unified and scalable framework for model development and evaluation. We
anticipate that IMDL-BenCo will become an essential resource for researchers and practitioners,
driving forward the capabilities and applications of IMDL technologies in various fields, including
information forensics and security.

7 Author Contributions

The authors’ contributions are: Xiaochen Ma: codebase design, the coding leader, and manuscript
writing. Xuekang Zhu: implements ObjectFormer, backbone models, and extractor modules; and
manuscript writing. Lei Su: implements MVSS-Net, NCL-IML, ManTra-Net, and cleaned NIST16;
and manuscript writing. Bo Du: implements PSCC-Net, Trufor, and manuscript writing. Zhuohang
Jiang: implements GPU-accelerated evaluators, and manuscript writing. Bingkui Tong: implements
CAT-Net, Grad-CAM, and manuscript writing. Zeyu Lei: implements ManTra-Net, SPAN, and
manuscript writing. Xinyu Yang: dataset debiasing, metrics analyzing, and manuscript writing.
Jiancheng Lv: general project advising. Chi-Man Pun: project advising. Jizhe Zhou: project
supervisor and manuscript writing.

8 Acknowledgement

This research was supported by the Sichuan Provincial Natural Science Foundation (Grant
No.2024YFHZ0355), the Fundamental Research Funds for the Central Universities (Grant
No.2022SCU12072 and No.YJ2021159), and the Science and Technology Development Fund,
Macau SAR (Grant 0141/2023/RIA2 and 0193/2023/RIA3). The authors would like to give special
thanks to Kaiwen Feng for his attentive work in analyzing the macro-F1 issues and fixing bugs on the
IMDL-BenCo codebase and Dr. Wentao Feng for the workplace, computation power, and physical
infrastructure support.

9



References
[1] Belhassen Bayar and Matthew C. Stamm. Constrained convolutional neural networks: A

new approach towards general purpose image manipulation detection. IEEE Transactions on
Information Forensics and Security, 13(11):2691–2706, Nov 2018.

[2] E Oran Brigham. The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988.

[3] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and flexible image augmenta-
tions. Information, 11(2), 2020.

[4] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong Li. Image manipulation detection by
multi-view multi-scale supervision. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), page 14165–14173, Montreal, QC, Canada, Oct 2021. IEEE.

[5] Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Giovanni Poggi, Koki Nagano, and Luisa
Verdoliva. On the detection of synthetic images generated by diffusion models. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1–5. IEEE, 2023.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, page 248–255, Miami, FL, Jun 2009. IEEE.

[7] Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, and Xirong Li. Mvss-net: Multi-view
multi-scale supervised networks for image manipulation detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, page 1–14, 2022.

[8] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tampering detection evaluation database. In
2013 IEEE China Summit and International Conference on Signal and Information Processing,
page 422–426, Beijing, China, Jul 2013. IEEE.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. (arXiv:2010.11929), Jun 2021. arXiv:2010.11929 [cs].

[10] Ambica Ghai, Pradeep Kumar, and Samrat Gupta. A deep-learning-based image forgery
detection framework for controlling the spread of misinformation. Information Technology &
People, 37(2):966–997, 2024.

[11] Ambica Ghai, Pradeep Kumar, and Samrat Gupta. A deep-learning-based image forgery
detection framework for controlling the spread of misinformation. Information Technology &
People, 37(2):966–997, 2024.

[12] Haiying Guan, Mark Kozak, Eric Robertson, Yooyoung Lee, Amy N. Yates, Andrew Delgado,
Daniel Zhou, Timothee Kheyrkhah, Jeff Smith, and Jonathan Fiscus. Mfc datasets: Large-scale
benchmark datasets for media forensic challenge evaluation. In 2019 IEEE Winter Applications
of Computer Vision Workshops (WACVW), page 63–72, Waikoloa Village, HI, USA, Jan 2019.
IEEE.

[13] Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas Dufour, and Luisa Verdoliva.
Trufor: Leveraging all-round clues for trustworthy image forgery detection and localization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
20606–20615, 2023.

[14] Xiao Guo, Xiaohong Liu, Zhiyuan Ren, Steven Grosz, Iacopo Masi, and Xiaoming Liu. Hierar-
chical fine-grained image forgery detection and localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3155–3165, 2023.

[15] Jing Hao, Zhixin Zhang, Shicai Yang, Di Xie, and Shiliang Pu. Transforensics: Image forgery
localization with dense self-attention. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), page 15035–15044, Montreal, QC, Canada, Oct 2021. IEEE.

10



[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
page 770–778, Las Vegas, NV, USA, Jun 2016. IEEE.

[17] Yu-feng Hsu and Shih-fu Chang. Detecting image splicing using geometry invariants and
camera characteristics consistency. In 2006 IEEE International Conference on Multimedia and
Expo, page 549–552, Toronto, ON, Canada, Jul 2006. IEEE.

[18] Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak Chaudhuri, Zhenheng Yang, and Ram
Nevatia. Span: Spatial pyramid attention network for image manipulation localization. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXI 16, pages 312–328. Springer, 2020.

[19] Jin Huang and Charles X Ling. Using auc and accuracy in evaluating learning algorithms. IEEE
Transactions on knowledge and Data Engineering, 17(3):299–310, 2005.

[20] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A Efros. Fighting fake news: Image
splice detection via learned self-consistency. In Proceedings of the European conference on
computer vision (ECCV), pages 101–117, 2018.

[21] Vladimir V Kniaz, Vladimir Knyaz, and Fabio Remondino. The point where reality meets
fantasy: Mixed adversarial generators for image splice detection.

[22] Myung-Joon Kwon, Seung-Hun Nam, In-Jae Yu, Heung-Kyu Lee, and Changick Kim. Learning
jpeg compression artifacts for image manipulation detection and localization. International
Journal of Computer Vision, 130(8):1875–1895, 2022.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context, volume
8693 of Lecture Notes in Computer Science, page 740–755. Springer International Publishing,
Cham, 2014.

[24] Xun Lin, Shuai Wang, Jiahao Deng, Ying Fu, Xiao Bai, Xinlei Chen, Xiaolei Qu, and Wenzhong
Tang. Image manipulation detection by multiple tampering traces and edge artifact enhancement.
Pattern Recognition, 133:109026, 2023.

[25] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu. Pscc-net: Progressive spatio-channel
correlation network for image manipulation detection and localization. IEEE Transactions on
Circuits and Systems for Video Technology, 32(11):7505–7517, 2022.

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), page 9992–10002, Montreal,
QC, Canada, Oct 2021. IEEE.

[27] Xiaochen Ma, Bo Du, Xianggen Liu, Ahmed Y Al Hammadi, and Jizhe Zhou. Iml-vit: Image
manipulation localization by vision transformer. arXiv preprint arXiv:2307.14863, 2023.

[28] Thanh Thi Nguyen, Quoc Viet Hung Nguyen, Dung Tien Nguyen, Duc Thanh Nguyen, Thien
Huynh-The, Saeid Nahavandi, Thanh Tam Nguyen, Quoc-Viet Pham, and Cuong M Nguyen.
Deep learning for deepfakes creation and detection: A survey. Computer Vision and Image
Understanding, 223:103525, 2022.

[29] Adam Novozamsky, Babak Mahdian, and Stanislav Saic. Imd2020: A large-scale annotated
dataset tailored for detecting manipulated images. In 2020 IEEE Winter Applications of
Computer Vision Workshops (WACVW), page 71–80, Snowmass Village, CO, USA, March 2020.
IEEE.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

11



[31] Aditya Kumar Sahu, M Hassaballah, Routhu Srinivasa Rao, and Gulivindala Suresh. Logistic-
map based fragile image watermarking scheme for tamper detection and localization. Multimedia
Tools and Applications, 82(16):24069–24100, 2023.

[32] Aditya Kumar Sahu, Monalisa Sahu, Pramoda Patro, Gupteswar Sahu, and Soumya Ranjan
Nayak. Dual image-based reversible fragile watermarking scheme for tamper detection and
localization. Pattern Analysis and Applications, 26(2):571–590, 2023.

[33] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international conference on computer vision, pages
618–626, 2017.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. (arXiv:1409.1556), Apr 2015. arXiv:1409.1556 [cs].

[35] Irwin Sobel, Gary Feldman, et al. A 3x3 isotropic gradient operator for image processing. a
talk at the Stanford Artificial Project in, 1968:271–272, 1968.

[36] Shobhit Tyagi and Divakar Yadav. A detailed analysis of image and video forgery detection
techniques. The Visual Computer, 39(3):813–833, 2023.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[38] Luisa Verdoliva. Media forensics and deepfakes: an overview. IEEE Journal of Selected Topics
in Signal Processing, 14(5):910–932, 2020.

[39] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong
Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation
learning for visual recognition. IEEE transactions on pattern analysis and machine intelligence,
43(10):3349–3364, 2020.

[40] Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Abhinav Shrivastava, Ser-Nam Lim,
and Yu-Gang Jiang. Objectformer for image manipulation detection and localization. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), page 2354–2363,
New Orleans, LA, USA, Jun 2022. IEEE.

[41] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[42] Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong Ng, Xuanjing Shen, and Stefan
Winkler. Coverage — a novel database for copy-move forgery detection. In 2016 IEEE
International Conference on Image Processing (ICIP), page 161–165, Phoenix, AZ, USA, Sep
2016. IEEE.

[43] Yue Wu et al. Mantra-net: Manipulation tracing network for detection and localization of image
forgeries with anomalous features. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), page 9535–9544, Long Beach, CA, USA, Jun 2019. IEEE.

[44] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo.
Segformer: Simple and efficient design for semantic segmentation with transformers. Advances
in neural information processing systems, 34:12077–12090, 2021.

[45] Marcello Zanardelli, Fabrizio Guerrini, Riccardo Leonardi, and Nicola Adami. Image forgery
detection: a survey of recent deep-learning approaches. Multimedia Tools and Applications,
82(12):17521–17566, 2023.

[46] Lilei Zheng, Ying Zhang, and Vrizlynn LL Thing. A survey on image tampering and its
detection in real-world photos. Journal of Visual Communication and Image Representation,
58:380–399, 2019.

12



[47] Jizhe Zhou, Xiaochen Ma, Xia Du, Ahmed Y Alhammadi, and Wentao Feng. Pre-training-
free image manipulation localization through non-mutually exclusive contrastive learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22346–
22356, 2023.

[48] Jizhe Zhou and Chi-Man Pun. Personal privacy protection via irrelevant faces tracking and
pixelation in video live streaming. IEEE Transactions on Information Forensics and Security,
16:1088–1103, 2020.

[49] Peng Zhou, Xintong Han, Vlad I. Morariu, and Larry S. Davis. Learning rich features for
image manipulation detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, page 1053–1061, Salt Lake City, UT, USA, Jun 2018. IEEE.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14



A Appendix

A.1 Differences in Pretraining, Training, Evaluation, Metrics between SoTA models

As shown in Table 8, existing IMDL models exhibit significant discrepancies between the pre-
training datasets used (emphasizing the pre-training of the backbone, typically on natural images like
ImageNet [6] or MS-COCO [23]) and the specific datasets used for training in the IMDL tasks. This
introduces unfairness. Furthermore, as indicated in Table 9, there is a considerable gap between the
datasets selected for testing and the evaluation metrics used during testing. Therefore, to ensure the
healthy and sustainable development of this field, it is crucial to establish a standardized benchmark
for the fair and scientific evaluation of IMDL models’ performance.

Model Name Pretraining Dataset Training Dataset
IN SD1 TF CO DID KCMI SD2 CA2 DT FR Cov IMD CO+ RA+ NI16 Pa+ Col

ManTra-Net ✓ - - - ✓ ✓ ✓ - - - - - - - - - -
SPAN ✓ - - - - - ✓ - - - - - - - - - -
MVSS-Net ✓ - - - - - - ✓ ✓ - - - - - - - -
CAT-Net ✓ - - - - - - ✓ - ✓ - ✓ ✓ ✓ - - -
ObjectFormer - ✓ - - - - - - - - - ✓ - ✓ -
TruFor ✓ - ✓ - - - - ✓ - ✓ - ✓ ✓ ✓ - - -
PSCC-Net - - - ✓ - - - - - - - ✓ - - - -
IML-ViT ✓ - - - - - - ✓ - - - - - - - - -
PMAE ✓ - - - - - - ✓ - - - - - - - - -
NCL-IML - - - - - - - ✓ ✓ - ✓ - - - ✓ - ✓

-

Table 8: The information about the pretraining and training datasets for the models we reproduced.
IN, SD1, TF, CO, DID, KCMI, SD2, CA2, DT, FR, Cov, IMD, CO+, RA+, NI16, Pa+, and Col
correspond to ImageNet, Synthetic Dataset 1, Trufor dataset for noiseprint++, COCO dataset, Dresden
Image Database, Kaggle Camera Model Identification, Synthetic Dataset 2, CASIAv2, DEFACTO,
FantasticReality, Coverage, IMD2020, COCO+ (a tampered dataset generated from COCO), RAISE+
(a tampered dataset generated from RAISE), NIST16, Paris+ (a tampered dataset generated from
Paris), and Columbia, respectively.

Model Name Evaluating Dataset Evaluating Metrics
NI16 Col CA PSB COV DT Car GRIP CMF IMD DSO VP OF CoG AUC F1 Acc AP TNR TPR EER TPR1%

ManTra-Net ✓ ✓ ✓ ✓ ✓ - - - - - - - - - ✓ ✓ - - - - - -
SPAN ✓ ✓ ✓ - ✓ - - - - - - - - - ✓ ✓ - - - - - -

MVSS-Net ✓ ✓ ✓ - ✓ ✓ - - - - - - - - ✓ ✓ - - - - - -
CAT-Net ✓ ✓ ✓ - - - ✓ ✓ ✓ - - - - - - ✓ ✓ ✓ - - - -

ObjectFormer ✓ ✓ ✓ - ✓ - - - - ✓ - - - - ✓ ✓ - - - - - -
TruFor ✓ ✓ ✓ - ✓ - - - - - ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ - -

PSCC-Net ✓ ✓ ✓ - ✓ - - - ✓ - - - - ✓ ✓ - - - - ✓ ✓
IML-ViT ✓ ✓ ✓ - ✓ ✓ - - - - - - - ✓ ✓ - - - - - -
PMAE ✓ ✓ ✓ - ✓ ✓ - - - - - - - ✓ ✓ - - - - - -

NCL-IML ✓ ✓ ✓ - ✓ ✓ - - - - - - - ✓ ✓ - - - - - -

Table 9: Here is the validation dataset test metric information for the models we have reproduced.
NI16, Col, CA, PSB, COV, DT, Car, GRIP, CMF, IMD, DSO, VP, OF, CoG respectively represent
NIST16, Columbia, CASIA, PhotoShop-battle, COVERAGE, DEFACTO, Carvalho, GRIP Dataset,
CoMoFoD, IMD2020, DSO-1, VIPP, OpenForensics, and CocoGlide.

A.2 Datasets in this paper

We follow MVSS-Protocol and CAT-Protocol to evaluate the performance of all models. Thus, eight
publicly available datasets are included in this benchmark. The manipulation type, the number of
manipulated images, and the number of authentic images are shown in Table 10.

A.3 SoTA models in model zoo

SPAN [18] SPAN uses the pre-trained VGG-based feature extractor in ManTra-Net[43] and proposes
pyramid spatial attention propagation. Pyramid spatial attention propagation goes through self-
attention blocks with proper dilation distances. Thus, information from each pixel location is
propagated in a pyramid structure. Then, it uses three convolutional layers to make the decision.
We use the feature extractor and its weight from ManTraNet-pytorch8, then implement the PyTorch

8https://github.com/RonyAbecidan/ManTraNet-pytorch

15

https://github.com/RonyAbecidan/ManTraNet-pytorch


Table 10: Datasets information. The composition of images and types of manipulation images in
various datasets."×" means there is no relevant information.

Dataset Type Manipulation type

auth tamp cope-move splice remove

CASIA v2 7491 5123 3274 1849 0
CASIA v1 0 920 459 461 0
IMD2020 414 2010 × × ×
NIST16 0 564 236 225 103

COVERAGE 100 100 100 0 0
Columbia 183 180 0 180 0

Fantastic Reality 16592 19423 × × ×
tampCOCO 0 800000 × × ×
compRAISE 24462 0 0 0 0

version of the pyramid spatial attention propagation and decision module. Besides, we add residual
net to the VGG backbone in the feature extractor, as we find the model hard to converge.

ManTra-Net [43] ManTra-Net-pretrain aligns ManTraNet-pytorch8 with our benchmark. We denor-
malize the input images and transfer the weight into our form (Since the normalization in the original
repository differs), then test on five datasets.

MVSS-Net [4] MVSS-Net uses BayarConv and SRM operator as feature extractors, with ResNet50
as its backbone network. During replication, we used the code from the repository mentioned in
the main text, making no major modifications. We did not use AMP (Automatic Mixed Precision)
during training since it may cause NAN issues. The model was trained for 200 epochs with an initial
learning rate of 1e-4. MVSS-Net performs label prediction.

CAT-Net [22] The CAT-Net model first extracts features through convolution from both the RGB
Stream and the DCT Stream, then fuses the information from these two parts. During our replication
process, we primarily used the official implementation of the model structure. However, we reim-
plement the artifact learning module in PyTorch to leverage GPU acceleration. This model does not
include a label prediction function. The total number of training epochs was set to 200, with an initial
learning rate of 0.0005.

NCL-IML [47] NCL-IML does not use a feature extractor and employs patch-level contrastive
supervision learning, with ResNet101 as its backbone network. We used the code from the repository
mentioned in the main text for replication. For loss calculation, we replaced the ASPP output loss
with edge loss. We did not use AMP during training. The model was trained for 500 epochs using the
SGD optimizer, with an initial learning rate of 7e-3.

PSCC-Net [25] PSCC-Net leverages features at different scales with dense cross-connections to
produce manipulation masks in a coarse-to-fine fashion, with a lightweight backbone named HRNet.
We use the model and training code from the official repository. The training is conducted for 150
epochs, with the initial learning rate reduced from 1e-4 to 0. Following the original paper, the loss
function consisted of two parts: mask loss and label loss.

Trufor [13] Trufor relies on the extraction of both high-level and low-level traces through a
transformer-based fusion architecture that combines the RGB image and a learned noise-sensitive
fingerprint. The learning process consists of three stages: noiseprint++, localization, and detection.
Due to the lack of pretraining data for noiseprint++, we carefully extract the weights of noiseprint++
from the checkpoint provided in the official repository to train the latter two stages. During the
localization training stage, we use a learning rate of 4e-5, decaying to 0, and train for 150 epochs. In
the detection training stage, we use a learning rate of 1e-4, decaying to 0, and train for 100 epochs.

IML-ViT [13] IML-ViT is a plain ViT structure that employs a high-resolution image input strategy
supplemented by multi-scale and edge supervision. This allows for the effective utilization of various
self-supervised pre-trained ViTs for initialization. It does not use any existing feature extractors. We
directly used the author’s original GitHub repository for the localization task, and it converged after
training for 200 epochs with a learning rate of 1e-4.

16



Objectformer [40] ObjectFormer uses the transformer block from the pre-trained ViT-B/16 model as
the backbone. The input image size is 224. Data preprocessing involves using the FFT package to
extract high-frequency information. The image and high-frequency data are passed to their respective
patch embed layers and concatenated along the sequence length dimension. ObjectFormer initializes
the first eight layers of the same pre-trained transformer blocks twice for the encoder and decoder
parts. In the encoder, a trainable parameter serves as the query, with the concatenated features as
the key and value. The encoder’s output functions as the query, key, and value for the decoder.
The feature then undergoes a BCIM feature change, completing the encoder and decoder forward
propagation process. After repeating this process eight times, deconvolution and linear interpolation
are applied, and the output is reshaped into the mask required for prediction during training. Since
the model released in the official repository differs from the structure mentioned in the original paper,
we manually re-implement the ObjectFormer following the description from the paper. ObjectFormer
uses a cosine learning rate schedule starting from 1e-5 to 5-7, training the model for 1100 epochs on
the Protocol-MVSS dataset and 2000 epochs on the Protocol-CAT dataset.

A.4 More Pixel-level Performance Results

In addition to the F1 score, we also evaluated the SoTA models on pixel-level AUC and IoU, with the
results presented in Table 11 and Table 12, respectively. As mentioned earlier, AUC often reflects an
overoptimistic metric and struggles to accurately measure the localization precision of the model. On
the other hand, IoU fails to handle the extreme imbalance between negative and positive samples,
which is a common issue in IMDL datasets, where the tampered area in an image is typically quite
small. Therefore, we believe that the F1 score better reflects the model’s localization performance.

Table 11: Pixel-level AUC.
Protocol Method DH Size COVERAGE Columbia NIST16 CASIAv1 IMD2020 Average

Protocol-MVSS

Mantra-Net[43] × 256×256 0.778 0.804 0.769 0.788 0.775 0.783
MVSS-Net[4] ✓ 512×512 0.720 0.732 0.737 0.861 0.755 0.761
CAT-Net[22] × 512×512 0.759 0.800 0.787 0.910 0.775 0.806

ObjectFormer[40] × 224×224 0.739 0.528 0.722 0.876 0.680 0.709
PSCC-Net[25] ✓ 256×256 0.697 0.814 0.725 0.833 0.778 0.769

Trufor[13] ✓ 512×512 0.911 0.928 0.820 0.946 0.840 0.889
IML-ViT[27] × 1024×1024 0.871 0.898 0.789 0.940 0.814 0.862

Protocol-CAT

MVSS-Net[4] ✓ 512×512 0.870 0.933 0.790 0.912 × 0.876
CAT-Net[22] × 512×512 0.917 0.946 0.822 0.980 × 0.916

ObjectFormer[40] × 224×224 0.747 0.858 0.775 0.884 × 0.816
PSCC-Net[25] ✓ 256×256 0.884 0.946 0.828 0.919 × 0.894

Trufor[13] ✓ 512×512 0.942 0.899 0.878 0.974 × 0.924
IML-ViT[27] × 1024×1024 0.942 0.955 0.893 0.976 × 0.942

Table 12: Pixel-level IoU.
Protocol Method DH Size COVERAGE Columbia NIST16 CASIAv1 IMD2020 Average

Protocol-MVSS

Mantra-Net[43] × 256×256 0.066 0.348 0.135 0.092 0.062 0.141
MVSS-Net[4] ✓ 512×512 0.192 0.290 0.176 0.440 0.201 0.260
CAT-Net[22] × 512×512 0.204 0.469 0.196 0.509 0.198 0.315

ObjectFormer[40] × 224×224 0.181 0.224 0.111 0.320 0.106 0.478
PSCC-Net[25] ✓ 256×256 0.146 0.477 0.150 0.310 0.157 0.248

Trufor[13] ✓ 512×512 0.352 0.832 0.271 0.666 0.267 0.478
IML-ViT[27] × 1024×1024 0.372 0.685 0.250 0.648 0.264 0.444

Protocol-CAT

MVSS-Net[4] ✓ 512×512 0.389 0.672 0.259 0.491 × 0.453
CAT-Net[22] × 512×512 0.387 0.895 0.212 0.748 × 0.561

ObjectFormer[40] × 224×224 0.188 0.670 0.203 0.320 × 0.345
PSCC-Net[25] ✓ 256×256 0.301 0.814 0.297 0.500 × 0.478

Trufor[13] ✓ 512×512 0.415 0.859 0.296 0.775 × 0.586
IML-ViT[27] × 1024×1024 0.590 0.933 0.440 0.749 × 0.678

A.5 Detailed Introduction of Evaluators

In the field of Image Manipulation Detection & Localization (IMDL), the standardization of evaluation
metrics is essential for ensuring the comparability and reproducibility of research outcomes. The
domain currently defines seven core evaluation metrics, categorized into two major classes: image-
level and pixel-level. At the image level, the evaluation metrics include the Area Under the Curve
(AUC) score, F1 score, and accuracy. The pixel-level evaluation metrics further expand to include
AUC, F1 score, accuracy, and Intersection over Union (IoU).

However, due to the variability in dataset preprocessing methods in previous research, there is a
certain degree of disorder in the existing evaluation system. For instance, differences in image size

17



adjustment (resize) and padding strategies among models can lead to discardable content in the
output prediction mask. Additionally, the inconsistency in how manipulated areas are annotated
across different models—some marking manipulated areas as 1 while others as 0 has resulted in
inconsistencies in the calculation methods and results of the evaluation metrics, and even wholly
opposite outcomes in some cases. This inconsistency greatly complicates the establishment of a
unified evaluation standard and benchmark in the IMDL field.

To address this issue, we conducted in-depth research and analysis, comprehensively considering the
evaluation methods of existing models, and proposed a set of unified evaluation metric calculation
formulas. Our goal is to eliminate the differences between various models and datasets, ensuring
the consistency and comparability of evaluation results. Furthermore, to enhance the efficiency
and scalability of the evaluation process, we developed an evaluation framework based on GPU
multi-card acceleration, which significantly improves the calculation speed of evaluation metrics
on large-scale datasets. This framework provides researchers in the IMDL field with an efficient
and unified evaluation tool. Each evaluator has batch_update and epoch_update methods, which
respectively compute metrics for each batch and after each epoch, catering to different needs.

Next, we will provide a detailed introduction to our Evaluators and the details of their implementation.

A.5.1 Confusion Matrix Acceleration

The confusion matrix is a critical step in computing model metrics. In sklearn, it is often computed
using the CPU, which processes each image individually, resulting in slow computation speed. We
found that the way to compute the confusion matrix is fixed, so it is possible to calculate multiple
images simultaneously through matrix computation. The following algorithm1 uses GPU acceleration
to speed up the computation of the confusion matrix.

Algorithm 1 Confusion Matrix
1: procedure CAL CONFUSION MATRIX(predict, mask, shape_mask)
2: if shape_mask = None then
3: TP = sum((1− predict) × mask × shapemask)
4: TN = sum(predict × (1−mask) × shapemask)
5: FP = sum((1− predict) × (1−mask) × shapemask)
6: FN = sum(predict × mask × shapemask)
7: return TP ,TN ,FP ,FN
8: else
9: if shape_mask! = None then

10: TP = sum((1− predict) × mask )
11: TN = sum(predict × (1−mask) )
12: FP = sum((1− predict) × (1−mask))
13: FN = sum(predict × mask )
14: return TP ,TN ,FP ,FN
15: end if
16: end if
17: end procedure

A.5.2 Pixel-Level Evaluators Acceleration

Pixel-level evaluation includes F1, AUC, ACC, and IOU. Each of these metrics can be calculated with
the help of a confusion matrix. Therefore, it is possible to compute pixel-level metrics for multiple
images at the same time through matrix computation, thus speeding up the process. During the
computation, we accelerate each batch and use reduction techniques externally to aggregate values
computed by multiple GPUs, thereby achieving multi-GPU acceleration for Pixel-Level Evaluation.

A.5.3 Image-Level Evaluators Acceleration

Pixel-level evaluation requires collecting predictions for all images before separately calculating F1,
AUC, and ACC. Therefore, during the batch_update phase, we obtain the model’s predictions on

18



different GPUs. In the final epoch_update phase, we use reduction and gather techniques to aggregate
predictions stored on each GPU and then compute the corresponding Pixel-Level metrics.

A.6 GradCAM for Analysis

For IMDL tasks, it is crucial to analyze whether the model captures low-level trace information
or high-level semantic information to understand its decision-making process. Therefore, we used
Grad-CAM [33] to examine what different models focus on in Figure 5. We found that various models
prioritize different types of information in their decision support. In future research, effectively
analyzing each model’s performance and corresponding Grad-CAM patterns for each layer can
significantly aid in designing and improving model performance.

Figure 5: Grad-CAM visualization of models in our benchmark

A.7 Additional Analysis and Insights

A.7.1 Modules Experiments Setting

Our experiments utilized the CASIAv2 dataset for training purposes, while evaluation was conducted
on four different datasets to assess the generalization capabilities: CASIAv1, Columbia, NIST16,
Coverage, and IMD2020. In addition to ViT-B/16, our experiments modified the input layer to include
the feature maps extracted by the feature extractors. For instance, the DCT feature extractor’s output
was three channels, which were concatenated with the original image to create a 6-channel input for
the input layer. If the backbone output feature shape is inconsistent with the mask size, deconvolution
was employed to ensure that the dimensions of the predicted mask matched the expected output. All
models were initialized with pre-trained weights.

ViT-B/16-8-cat employed a distinct patch embedding technique. The original pre-trained patch
embedding layer was used for patch extraction on the original image, while a new patch embedding
layer was introduced for patch extraction on the feature maps generated by the feature extractors.
After both layers completed patch extraction, the results were concatenated along the sequence length
(L) dimension. Moreover, the combined models, based on ViT-B/16-8 and ViT-B/16-8-cat, only the
first eight layers of the original transformer block were utilized to reduce training time.

In our experimental setup, all images were resized to a uniform resolution of 512×512 pixels before
being fed into the models. We implemented a cosine annealing learning rate schedule, which decayed
from 1e − 4 to 5e − 7 over the training period. Each experiment used a batch size of 24 and was
optimized using the AdamW optimizer with weight decay set to 0.05. Additionally, we used an
accumulation iteration of 8, a seed of 42, and a warmup period of 2 epochs.

19



Table 13: Various backbone models combined with different feature extractors. The models are
trained on CASIAv2 and tested on four datasets.

Backbone ResNet151 U-Net
Feature Extractor None Bayar DCT FFT Sobel SRM None Bayar DCT FFT Sobel SRM
CASIA v1 0.6286 0.441 0.6344 0.6337 0.3201 0.611 0.0227 0.0142 0.0213 0.0223 0.0152 0.0194
Columbia 0.4971 0.2274 0.479 0.5018 0.2487 0.5036 0.0059 0.0046 0.0048 0.0051 0.0023 0.0043
NIST16 0.1864 0.1806 0.2047 0.2316 0.1994 0.2083 0.0253 0.0362 0.0215 0.0249 0.0262 0.0315
Coverage 0.2612 0.1509 0.2056 0.2323 0.1412 0.2849 0.0046 0.0273 0.0056 0.0048 0.0135 0.0108
IMD20 0.1943 0.1335 0.1897 0.1929 0.1280 0.1691 0.0189 0.0078 0.0134 0.0085 0.0189 0.0146
Average F1 0.354 0.227 0.343 0.358 0.207 0.355 0.015 0.018 0.013 0.013 0.015 0.016
Best Epoch 97 149 149 197 77 151 200 200 197 200 191 200

Backbone SegFormer-B2 Swin-B
Feature Extractor None Bayar DCT FFT Sobel SRM None Bayar DCT FFT Sobel SRM
CASIA v1 0.6544 0.2607 0.619 0.6187 0.2239 0.6019 0.6831 0.4186 0.7092 0.7147 0.3394 0.6831
Columbia 0.8575 0.09744 0.5571 0.588 0.1454 0.5179 0.823 0.2159 0.6979 0.6705 0.302 0.5143
NIST16 0.2767 0.1764 0.2729 0.2487 0.2005 0.2388 0.3133 0.1513 0.3048 0.28 0.2255 0.2858
Coverage 0.2711 0.107 0.1655 0.1663 0.0821 0.2293 0.5244 0.1493 0.324 0.2809 0.1211 0.2416
IMD2020 0.2679 0.0754 0.2042 0.1997 0.0844 0.2248 0.3459 0.1363 0.3223 0.2899 0.1387 0.2494
Average F1 0.466 0.143 0.364 0.364 0.147 0.363 0.538 0.214 0.472 0.447 0.225 0.395
Best Epoch 151 181 200 169 165 151 77 177 137 157 173 165

Backbone ViT-B/16 ViT-B/16-8
Feature Extractor None Bayar DCT FFT Sobel SRM None Bayar DCT FFT Sobel SRM
CASIA v1 0.5169 0.0698 0.4001 0.4209 0.0311 0.4633 0.4195 0.2338 0.2989 0.2949 0.2031 0.4308
Columbia 0.3609 0.0854 0.2721 0.2757 0.0524 0.3057 0.1890 0.1441 0.1275 0.2656 0.1747 0.2063
NIST16 0.2344 0.1104 0.1944 0.2126 0.0861 0.1943 0.2047 0.1415 0.1560 0.1630 0.1273 0.1932
Coverage 0.1365 0.0463 0.1076 0.1097 0.0256 0.1303 0.0932 0.0585 0.0640 0.1028 0.0614 0.0824
IMD2020 0.2259 0.0284 0.1669 0.1877 0.0144 0.1755 0.1588 0.0869 0.1072 0.1149 0.0711 0.1687
Average F1 0.295 0.068 0.228 0.241 0.042 0.254 0.213 0.133 0.151 0.188 0.128 0.216
Best Epoch 151 200 191 200 200 184 157 151 200 149 177 165

A.7.2 Modules Detailed Evaluation

As shown in Table 13, except for U-Net, which is completely underfitting, the performance of all
backbone models combined with Bayar and Sobel has decreased, indicating that Bayar and Sobel are
not suitable for the IMDL tasks. While DCT, FFT, and SRM improve some models, they also reduce
performance in others, necessitating an analysis of their combined models’ performance.

Regarding backbones, SegFormerB2 and Swin-B are more suitable for manipulation detection tasks
than ViT and ResNet. Unet’s highest F1 score is close to 200 epochs, indicating that it is seriously
underfitting, and the highest indicator is still very poor compared to other models, making it difficult
to train and unsuitable for manipulation detection tasks. Comparing the performance of the ViT
whole transformer block and the first eight blocks, it can be concluded that the larger ViT model is
more suitable.

In terms of model combinations, DCT, FFT, and SRM significantly improve the average F1 score
of ResNet151. Compared to ViT’s performance without feature extractors, using feature extractors
severely slowed down its convergence. However, in the shallow model features fusion technique
using feature map concatenation, ViT-B/16-8 converges faster than when modifying the input patch
embed layer. Therefore, other feature fusion methods should be considered to determine whether
low-level features are effective. When Swin uses feature extractors, its performance on the test set
CASIAv1 improves, but performance on other datasets decreases, indicating overfitting. SegFormer
is not suitable for all feature extractors.

A.7.3 Details of the NIST16 Dataset Cleansing Process

Based on the label leakage present in NIST16, we proposed a method to remove similar images from
the NIST16 dataset. This ensures that the remaining images do not exhibit overly similar patterns,
allowing models to focus on detecting manipulation traces rather than exploiting image patterns to
cheat.

We use the SSIM (Structural Similarity) index to determine if two images are similar. NIST16
contains 564 manipulated images, and by calculating the SSIM value for each pair of images, we
obtain a 564x564 matrix. Through multiple experiments, we set the threshold for determining whether
two images are similar at an SSIM value of 0.9. If the SSIM value exceeds the threshold, we consider

20



Figure 6: The heatmaps for NIST16 and NIST16-C. The brighter the color, the higher the SSIM
value at the corresponding position. It can be seen that the heatmap for the NIST16 dataset is
noticeably brighter compared to NIST16-C. For NIST16, we randomly selected 183 images to
calculate their SSIM values.

Table 14: Pixel-level performance on the NIST16 dataset. The pixel-level performance on the
NIST16 dataset shows significant differences depending on whether fine-tuning was performed.
After fine-tuning, the pixel-level performance shows a substantial increase. For SPAN, the values in
parentheses are from SPAN’s pre-training."×" means there is no test data.

Protocol PSCCNet[25] Objectformer[40] SPAN[18]
fine-tuned 0.742 0.826 0.582(0.29)

Protocol-MVSS 0.2141 0.1732 ×
Protocol-CAT 0.3689 0.2682 ×

the two images similar and set the corresponding value in the matrix to 1. Conversely, if the SSIM
value is below the threshold, we consider the images dissimilar and set the corresponding value to 0.

We then compute the transitive closure of the resulting matrix and subsequently calculate the con-
nected components of the transitive closure matrix. The images within a single connected component
are considered to be from the same source. We performed manual filtering and further divided these
source images into multiple groups based on their manipulation methods. Finally, for each group of
similar images, we retained only one image that best represents the authentic manipulation.

Through this cleaning process, the NIST16 dataset was reduced to 183 images that do not exhibit label
leakage. We named this cleaned dataset NIST16-C. In Figure 6, we compare the heatmaps of NIST16
and NIST16-C. Considering the label leakage issue present in the NIST16 dataset, we propose a
method for dividing the NIST16 dataset into training and validation sets. We ensure that similar
images are either all in the validation set or all in the training set, thereby increasing the difficulty of
training. This eliminates the abnormally high metrics and performance that were previously achieved
with random splitting of the training and validation sets on the NIST16 dataset.

A.7.4 Controversial F1 Metrics

In 2018, Minyoung Huh et al[20]. proposed a permuted metrics approach. They compared the F1
score of the predicted image with the F1 score of the pixel-inverted predicted image, selecting the
larger value as the result. The formula is as follows:

F1permute(G,P ) = max
(
F1(G,P ),F1

(
G,PC

))
(1)

Where G refers to ground truth and P refers to prediction. Such a formula is controversial as it does
not accurately reflect the model’s detection capabilities. In Figure 4, the model’s prediction results
are completely incorrect, yet its F1 score is relatively high.

21



The F1 score of a completely incorrect predicted image should theoretically be 0.00. However, when
the white area in the mask exceeds 50%, the F1 score of the inverted image can even reach above
0.66, which is clearly unreasonable. The state-of-the-art models CAT-Net and TruFor are also using
this metric. Permuted metrics seem to artificially inflate the scores, suggesting a need for a more
reasonable evaluation metric.

In the Python Skearn library, the F1 score function9 has five options for calculation methods: ‘micro’,
‘macro’, ‘samples’, ‘weighted’, ‘binary’. Except for the ‘binary’ is the commonly known F1, others
are mainly used for multi-label classification problems and unsuitable for our tampering detection
task with a single binary mask. This means that F1 scores are computed for each class and then
averaged. Precisely, when used for binary classification, an additional F1 score is calculated by
reversing both the predicted mask and the ground truth, and this score is averaged with the original F1
score. The specific averaging algorithms are different between macro and micro, and the mathematical
formulas are as follows:

F1 = 2× TP

2× TP + FP + FN

F1′ = 2× TN

2× TN + FN + FP

F1macro =
F1 + F1′

2
=

TP

2× TP + FP + FN
+

TN

2× TN + FN + FP

F1− F1macro =
TP

2× TP + FP + FN
− TN

2× TN + FN + FP

=
1

2 + FP+FN
TP

− 1

2 + FN+FD
TN

F1 = 2× TP

2× TP + FP + FN

F1micro =
TP + TN

2× (TP + TN) + 2× (FP + FN)

F1− F1micro = 2× TP

2× TP + FP + FN
− TP + TN

2× (TP + TN) + 2× (FP + FN)

=
(TP − TN)× (FP + FN)

(2× TP + FP + FN)[2× (TP + TN) + 2× (FP + FN)]

Since in IMDL the majority of cases typically have TP << TN , it follows that F1− F1macro < 0
and F1− F1micro < 0. Consequently, F1 < F1macro and F1 < F1micro, leading to an erroneous
estimation of model performance.

We have also provided code to verify the specific implementation of macro-F1 and micro-F1 here:
https://github.com/scu-zjz/IMDLBenCo/blob/main/tests/test_sklearn_F1s.py

For the example in Figure 4, where the theoretical F1 score is 0.00, the F1 values calculated using
the binary, micro, macro, and weighted parameters are 0.00, 0.74, 0.42, and 0.74, respectively.
Clearly, except for the binary parameter, all other parameters seem to artificially inflate the F1 score.
This is evidently unreasonable and cannot be used to measure the detection accuracy of an image
manipulation detection model. However, some studies currently use an unreasonable F1 calculation
formula, such as HiFi-Net[14].

A.7.5 AUC Metrics

Overoptimistic AUC Value. AUC is the other widely adopted metric in IMDL. Advanced models
with high AUC values may also perform poorly in tamper localization, suggesting that AUC alone
does not reliably gauge a model’s detection capability. The specific explanation is as follows:

9https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#
sklearn.metrics.f1_score

22

https://github.com/scu-zjz/IMDLBenCo/blob/main/tests/test_sklearn_F1s.py
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score


Figure 7: Exapmple of AUC, and how trapezoid constructed when only have three data points.

The Area Under the ROC Curve (AUC) is a metric used to measure the overall performance of a
binary classification model across all possible classification thresholds[19]. The ROC curve itself
plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings.
Visualization is shown in Figure 7.

Because of the threshold values, TPR and FPR are estimated through discrete points in practice. To
compute the integral, we leverage the classic trapezoid rule, which involves dividing the area under
the ROC curve into as many as possible trapezoids and summing their areas.

Set tuples (FPR1, TPR1), (FPR2, TPR2), ..., (FPRn, TPRn) to represent all the trapezoids

for areas under ROC, and FPRi is the i-th trapezoids along with a certain threshold value.

Then apply the trapezoid rule:

AUC =

∫ 1

0

f(x)dx (2)

≈
n∑

i=1

TPRi+1 − TPRi

2
× (FPRi+1 − FPRi) (3)

=

n∑
i=1

1

2
(

TPi+1

TPi+1 + FNi+1
)× (

FPi+1

FPi+1TNi+1
− FPi

FPi + TNi
) (4)

where i-th is the threshold for separating positive and negative samples.

We found that the AUC is calculated by accumulating the results across all thresholds. However, in
practice, since the distribution of the dataset is unknown, a threshold of 0.5 is typically chosen for
making predictions. This leads to integrating over unnecessary regions when the model’s ROC curve
deviates significantly from 0.5, resulting in an overestimation. Such a situation is also supported by
previous work (Fig.8 in MVSS-Net++[7]).

Further, the manipulated regions in an image are usually very small. Therefore, in manipulated images,
the number of manipulated pixels and the number of authentic pixels are extremely unbalanced.
Due to such a large skew in class distribution, although AUC performs well on many unbalanced
classification problems, it still tends to provide an over-optimistic estimate of IML model performance.
Recent studies [4, 48] have also noticed similar issues with finding the optimal threshold, but they
did not provide a profound solution. In this paper, we speculate that this disastrous performance is
due to overfitting caused by large-scale pre-training, and the AUC metric is not sufficient to address
this overfitting problem. Therefore, considering the overly optimistic estimates of the AUC metric in
IML, we advocate using only the F1 score to evaluate IML models.

23


	Introduction
	Related Works
	Our Codebase
	Data Loader
	Model Zoo
	Training Scripts
	Evaluators

	Our Benchmark
	Benchmark Settings
	Benchmark Protocols
	Our Benchmark Results

	Experiments and Analysis
	Low-level Feature Extractors and Backbones
	Dataset Bias and Cleansing Methods
	Evaluation Metrics Selection

	Conclusions
	Author Contributions
	Acknowledgement
	Appendix
	Differences in Pretraining, Training, Evaluation, Metrics between SoTA models
	Datasets in this paper
	SoTA models in model zoo
	More Pixel-level Performance Results
	Detailed Introduction of Evaluators
	Confusion Matrix Acceleration
	Pixel-Level Evaluators Acceleration
	Image-Level Evaluators Acceleration

	GradCAM for Analysis
	Additional Analysis and Insights
	Modules Experiments Setting
	Modules Detailed Evaluation
	Details of the NIST16 Dataset Cleansing Process
	Controversial F1 Metrics
	AUC Metrics



