Recurrent neural network dynamical systems
for biological vision

Supplementary material

A Recurrent neural network dynamical systems in neuroscience

Single neuron biophysical models. The dynamics of single neurons must be captured to some
reasonable fidelity in order to develop reliable models of networks. Two of the most widely stud-
ied models for single neurons are the Hodgkin-Huxley model [1] and the leaky integrate-and-fire
model [2]. The Hodgkin-Huxley model was developed to explain the ionic mechanisms underlying
action potential generation and propagation in neurons, using the squid giant axon as the experimental
model. However, the complexity of this model limits its use in large-scale simulations involving
thousands of neurons. Simplified models like the leaky integrate-and-fire model have been developed
to address this challenge. This model abstracts away the ion channel dynamics and instead focuses
on capturing the core behavior of a spiking neuron.

Handcrafted networks. Before the accessibility of deep learning tools, neuroscientists have proposed
models of RNNs by manually constructing their recurrent weights. One such example is the Hopfield
network [3]], which stores patterns and recalls them even from incomplete or corrupted inputs. This
is achieved by constructing its weights based on a Hebbian learning rule that helps form attractors
corresponding to the stored patterns [4]. Handcrafted continuous-time RNN dynamical systems have
also been suggested to explain various observations in neuroscience literature, such as the functioning
of head-direction cells [5] and how the brain maintains stable eye positions [6].

Another important subfield in neuroscience studies the dynamical properties of RNN dynamical
systems where the recurrent weights are randomly generated from some (controlled) distribution [[7 8]].
This was motivated by the need to study large-scale network behavior before the advent of deep
learning. Various dynamical motifs, such as oscillatory and chaotic regimes, have been identified in
RNNSs from such models through autocorrelations and Lyapunov exponents analyses.

Trained networks. Once artificial RNNs are adapted for continuous-time dynamics and applied to
biologically relevant tasks, they can be used to study various aspects of brain function. One approach
is to compare the emergent properties of RNN activity with the patterns observed in real neurons. For
instance, RNNs can generate low-dimensional dynamical structures, such as line attractors, which
correspond to stable states or trajectories in neural state space [9]. This approach was first applied to
investigate how the prefrontal cortex integrates sensory inputs to guide context-dependent decisions,
focusing on how neurons in this brain region handle the selection of relevant information while
ignoring irrelevant inputs [10].

Deep equilibrium models are a class of artificial neural networks that are remarkably similar to RNN
dynamical systems [[11]. At its core, deep equilibrium models rely on fixed points of single layers
(equivalent to infinitely stacking the same layer) instead of relying on multiple layers. However,
the similarities start to break down when considering the order of computations in the presence of
multiple layers. In RNNs with multiple layers, the activations of every layer are updated sequentially
at each time step. In the case of deep equilibrium models, a single layer is first simulated to its fixed
point before any computation in the next layer is performed.

In a different approach, continuous-time RNN dynamical systems were trained on a wide variety of
cognitive tasks simultaneously [[12]. This work investigates how such RNNs organize their internal
architecture and how their recurrent units become functionally specialized for different aspects of
cognition. The analysis of these functional clusters revealed that tasks that required similar cognitive
processes, such as decision-making across sensory modalities, recruited overlapping clusters of
neurons. This indicates that the network reused certain clusters across tasks that shared underlying
computational principles.

A Kernel size = 1 Kernel size =7

Example kernels Weight matrix Singular values Example kernels Weight matrix Singular values
E; . = 2
c T c r ©
S z " e z
3 8 =13 &
[2 < i :
£ " £
n »n

| — | 1

Neuron Neuron Neuron Neuron
Oscillatory regime Chaotic regime

S 20.2; S
[o [. 92
24l f203 = Za | =
= © = ©
o sx(N o o = o
[¢] > 1 = O > 1 =
a E& g a Es 8
3% 8 3> 1 s
[2 [2
< <

T T Trm r 1 r 1 T T Tm 1

PC1 Dimensions Time PC1 Dimensions Time

Figure S1: A. Examples of convolutional kernels, their resultant flattened weight matrices as described
in equation (2)) and their distribution of singular values. B. Gaussian-initialized CordsNets exhibiting
an oscillatory regime (left) and a chaotic regime (right). In each regime, we plot the population
trajectory of the space of the first two principal components (left), the cumulative variance explained
with participation ratio indicated (middle), and the activity autocorrelation (right).

B Analysis of dynamical characteristics

B.1 Converting a convolution into a 2-D weight matrix

CordsNets replace the recurrent and input weight matrices of dynamical RNNs with convolutional
operations. This is possible due to the fact that convolutions are linear operations, and can therefore
be rewritten as a 2-D matrix operating on a flattened 1-D vector. Here, we review the steps required
to do this on a single channel. Consider an input matrix X of size Hx X Wx and a convolutional
kernel K of size Hx x Wy . Applying the convolutional kernel K onto the input X would result in
an output Y with size (Hx — Hgx + 1) x (Wx — Wk + 1), assuming no padding and a stride of 1.
The (i, j)-th element of Y can be computed as:

Hig—1Wg—1
Yii= Y. Y. XitmjtnKmn 0]
m=0 n=0
This can be flattened into a linear operation:
Yﬂat _ KﬂatXﬂat (2)

where X is a HxWx x 1 vector representing the flattened input. K" would therefore have size
(Hx — Hg +1)(Wx — Wi +1) x HxWx. The elements of K™ can be determined by gathering
the terms of K that are multiplied with a specific X, j+n in equation (). This is visualized in
Figure , along with the singular values of K™, We see that the singular values decay smoothly
for sufficiently large kernel sizes, just like in full-rank matrices.

B.2 Randomly-initialized CordsNets

Gaussian-initialized dynamical RNNs with tanh activation functions have been extensively studied
in neuroscience literature [[7, [13]. Depending on the variance of the Gaussian initialization, fully-
connected RNNs can exhibit three distinct dynamical regimes: stable, oscillatory and chaotic. In
the stable regime, the network converges to a stable fixed point and remains stationary. In the
oscillatory regime, the network evolves over time in a periodic manner in low-dimensional activity
space (Figure [STB, left). We estimate activity dimensionality from its participation ratio (PR):

2

(Zv >‘i) (3)
>N

where \; represents the i-th eigenvalue of the activity covariance matrix [[14, [15]. The activity

autocorrelation also reflects this periodicity (Figure [STB, left). In contrast, the chaotic regime

PR =

is characterized by aperiodic and unpredictable behavior. This regime is identified by a positive
Lyapunov exponent, indicating exponential divergence of nearby trajectories. Network activity has
a much higher dimensionality compared to the oscillatory regime, and the autocorrelation decays
quickly to zero (Figure [STB, right).

B.3 Comparison with other architectures

We compare the solutions found by training CordsNets, fully-connected RNNs, low-rank RNNs [16]
and sparsely-connected RNNs [[17] on five cognitive tasks across different activation functions,
learning rates, network sizes and initializations. In addition to CordsNets, the other architectures in
our comparison are:

* Fully-connected RNNs have full-rank weight matrices of size N x N, where N is the number of
neurons.

* Low-rank RNNs have low-rank weight matrices with rank R < N. This is implemented by
decomposing the matrix into two smaller matrices P and Q with sizes NV x R and R x N so that

Wlow—rank = PQ

» Sparsely-connected RNNs have sparse weight matrices, implemented by an element-wise mask
Wpae = W © M, where every element in the mask M is 1 with some probability p and 0
otherwise.

The cognitive tasks are the same tasks previously adopted in the analysis of low-rank RNNs [16]:

* The perceptual decision-making (PDM) task consists of a fixation epoch of 100 ms, followed
by a stimulus epoch of 800 ms, a delay epoch of 100 ms and a decision epoch of 20 ms. During
the stimulus epoch, a noisy signal (Gaussian with standard deviation 0.1) drawn uniformly from
{£0.4,40.2,£0.1} is presented as input to the networks. The output of the networks during the
decision epoch should indicate the sign of the signal.

* The parametric working memory task (PWM) consists of a fixation epoch of 100 ms, a stimulus
epoch of 100 ms, a delay epoch randomly drawn from 500 ms to 2000 ms, a second stimulus epoch
of 100 ms and a decision epoch of 100 ms. In each stimulus epoch, a signal drawn uniformly from
{10, 11, ..., 34} is presented to the network. The output of the networks during the decision epoch
should compute the normalized differences in values of the two signals.

* The contextual decision-making task (CDM) consists of a fixation epoch of 100 ms, a context
epoch of 350 ms, a stimulus epoch of 800 ms, a second context epoch of 500 ms and a decision
epoch of 20 ms. The networks have four inputs: 2 cues and 2 noisy signals drawn uniformly from
{£0.4,+0.2,1+0.1}. One of the cues is set at 0.1 for a given trial, while the other is set to 0. The
networks are expected to output the sign of one of the signals depending on which cue is non-zero.

* The multi-sensory decision-making task (MDM) has the same task structure and network inputs
as CDM, except the 2 noisy signals have the same sign. Similarly, the networks are expected to
output either signal during the decision epoch.

* The delayed match-to-sample task (DMS) consists of a fixation epoch of 100 ms, a stimulus
epoch of 500 ms, a delay epoch randomly drawn from 500 ms to 3000 ms, a second stimulus epoch
of 500 ms and a decision epoch of 1000 ms. In both stimulus epochs, one of two possible signals is
presented, and the output of the networks during the decision epoch should indicate whether the
signals presented in both stimulus epochs are the same.

Table S1: Number of trainable parameters in the recurrent weights of different network architectures
across three different sizes. To match parameter counts, we vary the kernel size of CordsNets, weight
matrix rank of low-rank RNNs and weight matrix sparsity of sparsely-connected RNNs.

Neurons CordsNet Low-Rank RNN Sparse RNN
125 400 (kernel size 4) 500 (rank 2) 500 (sparsity 0.032)
216 900 (kernel size 5) 864 (rank 2) 864 (sparsity 0.0185)
512 2304 (kernel size 6) 2048 (rank 2) 2048 (sparsity 0.008)

A Perceptual Parametric Multi-sensory Contextual Delayed
decision-making working memory decision-making decision-making match-to-sample
=1 =1 w1 o5
o o o ©
= = = e
8 8 8 o
o o o Q
o ey £ =
[} &) &) S
0 0 0 O-5
4 4 20 20 4 4 5 5
Coherence A Frequency (Hz) Coherence Coherence (M) Predicted
B == Sparse RNN == CordsNet ==|ow-rank RNN == Fully-connected RNN
51 EN EN EN EN
© © © © ©
> > > > >
& & & & &
3 3 3 3 3
(o)) o (2] (2] (o))
£ £ £ £ £
20 [72l0) [7Z2l0) [72l0) [72l0)
0 Index 125 0 Index 125 0 Index 125 0 Index 125 0 Index 125
c Parametric working memory Delayed match-to-sample
1.25 4 1.25 4
P @ A A Sparse RNN
i 4 A “t i aa E A CordsNet
= A’ 4 £ a 2 A Low-rank RNN
o » A aba A o A A
@ ? A A Fully-connected RNN
T adas 5 A
5 s Yy a
'g g a N - Sparse RNN
£ £ 4 a “ 'y 2 CordsNet
3 S a s ab g
= = A M A z Low-rank RNN
= =) =)
= 1254 | = 1254 | Fully-connected RNN
-1.25 1.25 -1.25 1.25

Multi-dimensional scaling axis 1 Multi-dimensional scaling axis 1

Figure S2: A. Examples of psychometric curves of CordsNets trained to solve five cognitive tasks.
B. Normalized singular value distribution for different architectures on each respective task. C. Multi-
dimensional scaling plots of distance matrices obtained after aligning trajectories using Procrustes
analysis for the parametric working memory task (left) and the delayed match-to-sample task (right).

For each architecture-task pair, we trained 10 networks across three learning rates (1072,1073,107%),
three activation functions (ReLU, tanh and softplus) and three network sizes (Table [ST). We suc-
cessfully trained all networks on all tasks. Figure[S2JA shows examples of psychometric curves for
CordsNet on all five tasks. We also computed the singular values of the recurrent weights for all
architectures (Figure[S2B) and consistently found that CordsNets have singular value distributions
that are the most similar to fully-connected RNNs across all hyperparameters.

More importantly, we want to compare the neural trajectories of all architectures and quantify
how close they are to the trajectories of fully-connected RNNs. For each task and across every
hyperparameter setting, there are:

(2 trained/untrained) x (4 architectures) x (10 random initializations) = 80 networks

“

to be considered. Between each pair of networks, we align their neural trajectories using Procrustes
alignment and compute the resultant Procrustes distance, which ultimately gives us a 80 x 80 distance
matrix for one particular task and hyperparameter setting. This matrix can be visualized using
multi-dimensional scaling [18} [19] (Figure |S_7p). We observe that networks of all architectures
have similar aligned trajectories when they are either all trained or all untrained. This suggests

Table S2: Mean distance compared to fully-connected RNN of each architecture-task pair.

Task Sparse RNN CordsNet Low-Rank RNN
PDM 0.62 (+0.02) 0.64 (£0.03) 0.77 (£0.02)
PWM 0.84 (£0.02) 0.75 (£0.02) 0.85 (£0.01)
MDM 0.75 (£0.02) 0.73 (£0.03) 0.76 (£0.02)
CDM 0.69 (+0.01) 0.74 (£0.03) 0.66 (£0.01)
DMS 0.94 (£0.04) 0.86 (+0.05) 0.92 (£0.07)

. l Output

Stimulus PC1
Stimulus PC2

Stimulus PC1
Stimulus PC2

Delay period

¢ u Output

Stimulus PC1
Stimulus PC2

Response period

Output

f
W

Stimulus PC1
Stimulus PC2

Stimulus PC1
Stimulus PC2

Stimulus PC1
Stimulus PC2

Figure S3: Evolution of neural activity across time in CordsNets trained to perform a memory-pro
delayed-response task [20]. During the delay epoch, neural activity converges to different fixed/slow
points depending on the stimulus that was presented in the previous epoch. Depending on the type
of stimulus presented, the trained networks may exhibit ring (left), line (middle) or point attractors
(right) during the delay epoch. In the response epoch, neural activity rotates to the output axis and
approximately preserves the same geometry [20].

that all network architectures are solving the tasks in similar ways. Finally, we compute the mean
distances of each network architecture to fully-connected RNNs (Table [S2)) averaged across all
tasks and hyperparameters, and find that on average, CordsNets have the shortest mean distance to
fully-connected RNNs. We conclude that the convolutional recurrent structure of CordsNets does not
significantly restrict dynamical expressivity.

B.4 Attractor formation

A key dynamical feature of RNNss is their ability to retain information about past stimuli over time
through attractor states, enabled by carefully tuned recurrent weights. We want to check if the
convolutional structure of CordsNets would prevent these attractors from forming. To do this, we
train CordsNets on a memory-pro delayed-response task [20]. The task consists of epochs of random
duration, starting with a fixation epoch lasting between 300 ms to 700 ms, a stimulus epoch lasting
between 200 ms to 1600 ms, a delay epoch lasting between 200 ms to 1600 ms, and a response
epoch lasting between 300 ms to 700 ms. The random epoch durations have been known to promote
attractor formation. During the stimulus epoch, the network input can represent a circular variable, a
continuous linear variable, or a variable with 8 discrete states. The network output in the response
epoch should match the initial input. For each type of input, we successfully trained CordsNets to
generate ring, line, and point attractors, respectively, during the delay epoch (Figure[S3] top). During
the response epoch, neural activity shifts out of the output null space, creating a rotational effect that
approximately preserves the structure of the attractors. These results confirm that CordsNets are able
to manifest attractors despite their restricted weight structures.

C Training for image classification

C.1 Model architecture

The architectures of the CordsNets trained to perform image classification are described in Table [S3]
We generally follow the layer structure of ResNet-18 [21]], but with two key modifications: we omit
normalization and replace max pooling with average pooling, as averaging is a linear operation and
thus more compatible with the dynamics of RNNs. Another important design choice that we made
is to keep residual connections in our models. The brain performs cognition in a highly distributed
manner, leveraging a multitude of interconnected regions that work in concert to process information,
solve problems, and generate behaviors. Residual connections avoid the simplicity of a single-path
structure and allow for more sophisticated pathways for information to travel through the network.

Table S3: CordsNet architectures for image classification. In each block, the top convolution
represents a feedforward transformation, while the bottom convolution represents the recurrent
weights in the recurrent dynamical system.

Output size CordsNet-R2 CordsNet-R4 CordsNet-R6 CordsNet-R8
112 x 112 3x3 average pool, stride 2
3% 3,64 3% 3,64 3% 3,64 3% 3,64
P62 [3><3,64><2 [3><3,64]X2 {3x3,64}><2 [3x3,64]><2
3 x 3,128 3x 3,128 (3 x 3,128]
28 % 28 [3 x 3, 128} 2 [3 x 3, 128] 2 |3x3,128) *?
3 x 3,256 [3 % 3,256]
1414 [3><3,256] X2 33,256 * 2
[3 x 3,512]
T 3% 3,512| X2
1x1 average pool, linear, softmax

C.2 Training details

For all datasets used in our study, we selected image augmentation techniques widely recognized as
universally beneficial [22]]. Additional details can be found in Table |S_7f|

* MNIST. RandomAffine (5 degrees random rotation, 5% translation, 0.05 scaling factor and 5
degrees shear angle), ColorJitter (10% brightness, 10% contrast), ElasticTransform (scaling
factor 20, smoothness 5)

* Fashion-MNIST. RandomHorizontalFlip, RandomAffine (5 degrees random rotation, 5%
translation, 0.05 scaling factor and 5 degrees shear angle), ColorJitter (10% brightness, 10%
contrast), CutMix, MixUp

* CIFAR-10/CIFAR-100. RandomHorizontalFlip, RandomAugment, CutMix, MixUp

* ImageNet. RandomHorizontalFlip, RandomAugment

Table S4: Training specifics for each step of our proposed method to efficiently initialize CordsNet.
In step 3, the PReLU parameter « is varied from 0.95 to 0 in 20 steps of 0.05. For ImageNet, 0.1
epochs corresponds to 16000 iterations.

Dataset Epochs Optimizer Learning rate Batch size
Step 1 — Feedforward CNN
ImageNet 3 x 30 SGD le-1,1e-2, 1e-3 256
Others 3 x 100 SGD le-1, le-2, 1e-3 256
Step 2 — Linear RNN dynamical system
ImageNet 30 AdamW le-5 32
Others 100 AdamW le-5 32
Step 3 — Parametric annealing
ImageNet 20 x 0.1 AdamW le-5 8
Others 20x 1 AdamW le-5 8
Step 4 — Fine tune

ImageNet 20 AdamW le-5 8
Others 20 AdamW le-5 8

Table S5: Time required (in hours) to complete each step of our proposed initialization method, as
benchmarked on a server with 2x RTX 4090 GPUs. The time required to train CordsNet for one full
epoch is shown as a control, and the equivalent number of epochs (by time taken) using our method
is computed in the final column.

Model Dataset Step 1 Step 2 Control Epochs needed
MNIST 5.99 22.82 1.46 39.70
F-MNIST 4.05 20.65 1.47 36.77
R2 CIFAR-10 4.20 19.03 1.25 38.53
CIFAR-100 4.06 19.86 1.24 39.25
ImageNet 26.14 145.9 31.87 8.40
MNIST 6.06 38.05 2.86 35.40
F-MNIST 4.29 36.75 2.88 34.21
R4 CIFAR-10 4.22 31.85 2.40 35.02
CIFAR-100 4.26 32.34 2.34 35.67
ImageNet 27.44 245.2 62.27 7.38
MNIST 6.06 50.99 431 33.24
F-MNIST 4.50 49.95 4.26 32.77
R6 CIFAR-10 4.39 43.22 3.60 33.23
CIFAR-100 4.44 43.45 3.55 33.49
ImageNet 28.79 334.2 90.85 7.00
MNIST 6.10 67.44 5.65 33.00
F-MNIST 4.84 65.76 5.63 32.85
R8 CIFAR-10 4.82 56.53 4.73 32.97
CIFAR-100 4.70 57.50 4.71 33.19
ImageNet 31.20 439.2 121.04 6.89

C.3 Time benchmark

We train every model-dataset combination with a variable number of GPUs depending on memory
requirements, as shown.

* CordsNet-R2. 8x RTX 4090 (ImageNet), 2x RTX 4090 (others)

* CordsNet-R4. 4x H100 80GB (ImageNet), 4x RTX 4090 (others)
* CordsNet-R6. 4x H100 80GB (ImageNet), 4x RTX 4090 (others)
* CordsNet-R8. 8x H100 80GB (ImageNet), 8x RTX 4090 (others)

One of the control experiments we have tested is to train a separate model in the same amount of
time our proposed method took. In order to obtain an accurate estimate, we run every step of every
model on a single server with 2x RTX 4090 GPUs. We simulated the training for approximately 5
minutes for each step and extrapolated the time required for the entire step to be complete. We then
computed the number of epochs needed to be simulated by our control experiment by:

Time taken for step 1 + Time taken for step 2
Time taken for 1 control epoch

Control epochs = + Epochs in step 3 5)
This is because the parametric annealing step in step 3 involves training with the full loss function,
which is essentially equivalent to 1 control epoch. The benchmark times are reported in Table[S5] The
duration of each epoch is influenced by the specific image augmentation techniques we have chosen
to employ. The time taken for the MNIST dataset is particularly high due to the ElasticTransform
augmentation, which is notably time-consuming. Training on the MNIST datasets takes longer than
on the CIFAR datasets because of the larger MNIST training sets. For simplicity and to account for
variability, we keep the number of control epochs at 10 for ImageNet and 40 for the other datasets.

A Experimental literature: Majaj and Hong et al. 2015

Inferotemporal
cortex

R

CordsNet design choices

Inference window:
140ms - 200ms

Input stimulus:

]
ﬂ —_ >
1 : influences

1
L |

0 140 200 300
Time from stimulus presentation (ms)

neural
recordings

static images

Normalized
neural activity

Biological constraints:
neuron time constants

-

B C Transient solution Steady-state solution
logspace range -
% 1 o 0-0 § E 1 * ™ 1 * 1
E S g3 o |
> ° -2-0 g s 1 1
2o o -3-0 Z3 0 ' 0 '
0 60 -4 -0 0 800 0 800

Time (ms) Time (ms) Time (ms)

D 8‘@ Stimulus 1 ﬁ Stimulus 2
9, stimulus 1 No stimulus olf (400 ms) (400 ms)

) l (400 ms) (400 ms) No stimulus ¥ Stimulus 2

(400 ms) (400 ms)

Normalized activations Normalized activations

Stimulus 1 softmax output Stimulus 2 softmax output

1 *

T I S I

T 1 T 1 T 1 1
0 800 0 800 0 800 0 800

Multi- 1] * 0.5 * 1 * 0.5 *
stable -/\/\—_'\— _/\/v—‘\._ W
0 0 0 0 ————
T 1 T 1 T 1 T 1
0 800 0 800 0 800 0 800
Mono- 1] * 0.7 * 1 * 1 *
stable _/\’1 | \ _/\'ﬁ/\'-—
0 0 0 0
T 1 T 1 T 1 T 1
0 Time (ms) 800 0 Time (ms) 800 0 Time (ms) 800 0 Time (ms) 800

Figure S4: A. Building artificial neural network models of the biological visual system based on
experimental literature [23]]. The inference window of our loss function is derived from neural
recordings. B. Logarithmic scale applied to the cross-entropy loss terms at different time steps. C.
Trained networks can either classify images in a transient state where network activity is changing
within the time window (left) or a stationary state where activity is unchanged (right). D. Without
the spontaneous penalty term in the loss function, networks can exhibit three classes of solutions:
an unstable solution where network activity blows up after the inference window (top, green), a
multi-stable solution where the network remains stable after the first inference window but fails to
classify subsequent images (middle, red), and a mono-stable solution that correctly classifies any
number of inputs presented sequentially across time (bottom, purple).

D Loss function ablation study

The loss function we ultimately selected for training our networks on image classification is closely
related to the standard template of a cross-entropy loss term with some optional regularization terms.
We have a log-weighted sum of cross-entropy losses over 30 time steps and a spontaneous penalty
term (which is a form of regularization). We first reintroduce the loss function here:

log-weighting (Figure@)
—

loss = logspace(-3,0,steps=30) * CEloss(output[170:200],labels)
+ le-3 * MSEloss(activity[290:300],spontaneous)

Inference window (Figure[S4A)

(6)

Spontaneous penalty (Figure[S4C)

As stated in the main text, the network is simulated for 100 time steps (interpreted as 2 ms per time
step) without any input to allow the network to arrive at a steady state spontaneous activity level
(spontaneous). The inference time window of [170:200] corresponds to 140 ms to 200 ms after
stimulus presentation. This time window was selected based on experimental recordings showing

Table S6: Ablation studies for the logscale range used to weigh the cross-entropy loss terms across
time (top) and the coefficient of the spontaneous penalty term (bottom).

logscale range

Range Steady-state solution Transient solution
0—0 8 2
-1—0 10 0
—2—=0 10 0
-3—-0 10 0
—4 -0 10 0

Spontaneous penalty coefficient
Coefficient Mono-stable solution Other solutions

0 7 13
1075 16 4
1074 20 0
1073 20 0
1072 20 0
1071 20 0

heightened neural activity in the inferotemporal cortex of macaque monkeys following stimulus
presentation (Figure[S4JA). Just like in conventional supervised learning settings, we calculate the
cross-entropy loss across all 30 time steps within the selected window and sum them after weighing
them with a logarithmic scale across time (Figure [S4B). The purpose of this term is to ensure that we
do not get solutions where the accuracy peaks in the middle of the inference window and drops off
towards the end of the window, which we refer to as a transient solution. Instead, we want a network
where neural activity is stable throughout, which we refer to as a steady-state solution (Figure [S4[C).
We train 10 CordsNet-R4s on CIFAR-10 across various logscale ranges to verify this. We find that
varying the range of the logscale does not significantly impact the trained networks, as long as it is
used (Table[S6).

A fundamental characteristic of the brain is that it runs continuously, unlike artificial networks
that reset (or shut down) after each inference. Therefore, after our network correctly classifies an
image, we want it to accurately classify subsequent images, starting from the steady-state activity
produced by the previous image. Intuitively, we reason that this property can only be attained by a
mono-stable network, where there are no other fixed points in the vicinity of the activity space around
its spontaneous activity level. The main property of a mono-stable network is that it returns to the
same spontaneous activity level (before stimulus onset) after the presented image has been removed.
This motivates the spontaneous penalty term in our loss function. Without this term, we find that
trained networks can either be unstable (Figure [S4D, green) where network activity blows up after
the first inference window, multi-stable (Figure @p, red) where the network remains stable after first
inference but does not return to the original spontaneous activity level, or mono-stable ((Figure [S4D,
purple) which is the desired property. We train 20 CordsNet-R4s on CIFAR-10 across 6 different
spontaneous penalty coefficient values. We find that we need a sufficiently large coefficient (Table[S6)
to prevent unwanted solutions (unstable and multi-stable) from emerging in our trained networks.

E Fitting to neural data

The neural similarity metric computed in the main text is simply the original Brain-Score [24]]
extended to fit across all time steps rather than time-averaged quantities. Let N; be the number of
time steps, IV; be the number of images, /V; be the number of neurons in CordsNet and N, be the
number of neurons in the experimental recording. In each trial, we use a 90/10 train-test split (for a
total of 10 splits), such that for each training split, we fit a [N, V;, N;] matrix of CordsNet neural
activity with a [IN;V;, N»] matrix of experimental data [23] using 25-component partial least squares
regression. We compute the Pearson correlation coefficients of all No neurons for each test split and
select the median value. We then computed the mean coefficient across all 10 splits. We do not apply

any noise ceiling correction. We repeat the fitting process after shuffling the neural data in the time
axis. The entire process of fitting shuffled and unshuffled data is repeated over 20 trials. Finally, we
perform a paired t-test across the 20 data points to look for any statistically significant differences
between the scores when fitting on shuffled and unshuffled data.

F Code availability

Code for training and analyzing CordsNets, along with selected trained checkpoints, can be found at:

https://github.com/wnws2/cordsnet

References

[1] Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of Physiology 117, 500-544
(1952).

[2] Knight, B. W. Dynamics of encoding in a population of neurons. The Journal of General
Physiology 59, 734-766 (1972).

[3] Hopfield, J. J. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences 79, 2554-2558 (1982).

[4] Battista, A. Low-dimensional continuous attractors in recurrent neural networks: from statistical
physics to computational neuroscience. Université Paris sciences et lettres PhD thesis (2020).

[5] Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction
cell ensemble: a theory. Journal of Neuroscience 16, 2112-2126 (1996).

[6] Seung, H. S. How the brain keeps the eyes still. Proceedings of the National Academy of
Sciences 93, 13339-13344 (1996).

[7] Sompolinsky, H., Crisanti, A. & Sommers, H. J. Chaos in random neural networks. Physical
Review Letters 61, 259-262 (1988).

[8] van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory
and inhibitory activity. Science 274, 1724-1726 (1996).

[9] Battista, A. & Monasson, R. Capacity-resolution trade-off in the optimal learning of multiple
low-dimensional manifolds by attractor neural networks. Physical Review Letters 124, 048302
(2020).

[10] Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by
recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).

[11] Bai, S., Kolter, J. Z. & Koltun, V. Deep equilibrium models. Advances in neural information
processing systems 32 (2019).

[12] Yang, G.R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations
in neural networks trained to perform many cognitive tasks. Nature Neuroscience 22, 297-306
(2019).

[13] Mastrogiuseppe, F. & Ostojic, S. Linking connectivity, dynamics, and computations in low-rank
recurrent neural networks. Neuron 99, 609-623 (2018).

[14] Gao, P. et al. A theory of multineuronal dimensionality, dynamics and measurement. BioRxiv
(2017).

[15] Clark, D. G., Abbott, L. & Litwin-Kumar, A. Dimension of activity in random neural networks.
Physical Review Letters 131, 118401 (2023).

[16] Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. & Ostojic, S. The role of population
structure in computations through neural dynamics. Nature neuroscience 25, 783-794 (2022).

10

https://github.com/wmws2/cordsnet

[17] Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory recurrent neural networks
for cognitive tasks: a simple and flexible framework. PLoS computational biology 12, e1004792
(2016).

[18] Williams, A. H., Kunz, E., Kornblith, S. & Linderman, S. Generalized shape metrics on neural
representations. Advances in Neural Information Processing Systems 34, 4738—-4750 (2021).

[19] Ostrow, M., Eisen, A., Kozachkov, L. & Fiete, I. Beyond geometry: Comparing the temporal
structure of computation in neural circuits with dynamical similarity analysis. Advances in
Neural Information Processing Systems 36 (2024).

[20] Driscoll, L. N., Shenoy, K. & Sussillo, D. Flexible multitask computation in recurrent networks
utilizes shared dynamical motifs. Nature Neuroscience 1-15 (2024).

[21] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778
(2016).

[22] Cubuk, E. D., Zoph, B., Shlens, J. & Le, Q. V. Randaugment: Practical data augmentation with
no separate search. arXiv preprint arXiv:1909.13719 2,7 (2019).

[23] Majaj, N.J., Hong, H., Solomon, E. A. & DiCarlo, J. J. Simple learned weighted sums of inferior
temporal neuronal firing rates accurately predict human core object recognition performance.
Journal of Neuroscience 35, 13402-13418 (2015).

[24] Schrimpf, M. et al. Brain-score: Which artificial neural network for object recognition is most
brain-like? BioRxiv (2018).

11

	Recurrent neural network dynamical systems in neuroscience
	Analysis of dynamical characteristics
	Converting a convolution into a 2-D weight matrix
	Randomly-initialized CordsNets
	Comparison with other architectures
	Attractor formation

	Training for image classification
	Model architecture
	Training details
	Time benchmark

	Loss function ablation study
	Fitting to neural data
	Code availability

