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A. More information about the Stokes parameters

When placing a polarizer with polarizer angle α in front of the camera, according to the Malus’ law
[3], the captured polarized image1 Iα can be calculated as

Iα =
1

2
I · (1− p · cos(2(α− θ))), (1)

where I denotes the total intensity of the light, which can be regarded as the unpolarized image
(i.e., the image captured without using the polarizer), p ∈ [0, 1] and θ ∈ [0, π] denote the degree of
polarization (DoP) and the angle of polarization (AoP) of the incoming light to the sensor respectively.
Reformulating Eq. (1) into a polynomial form, Iα can be expressed as a linear combination of three
parameters S0,1,2:

Iα =
1

2
S0 −

1

2
cos(2α) · S1 −

1

2
sin(2α) · S2, (2)

where


S0 = I

S1 = I · p · cos(2θ)
S2 = I · p · sin(2θ)

(3)

are called the Stokes parameters [4] of the incoming light to the sensor. Once S0,1,2 are available, the
DoP p and AoP θ could be acquired by

p =

√
S2
1 + S2

2

S0
and θ =

1

2
arctan(

S2

S1
). (4)

The downstream polarization-based vision applications (e.g., reflection removal [5], shape from
polarization [2], dehazing [9], etc.) usually require the DoP p and AoP θ to provide physical clues.
To acquire p and θ, we need at least three polarized images with different polarizer angles since
Eq. (3) contains three unknowns S0,1,2. In practice, instead of using a conventional camera equipped
with a polarizer to capture three times by rotating the polarizer, using a polarization camera could be
more convenient. This is because a polarization camera (e.g., the Lucid Vision Phoenix polarization
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1Here we assume the camera response function to be linear since the polarization cameras usually output
images with a linear camera response function. Besides, we only focus on linear polarization (i.e., do not
consider circular polarization) since polarization cameras only equip linear polarizers.
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camera used in this work) can capture a polarized snapshot I consisting of four polarized images
Iα1,2,3,4 with different polarizer angles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦ in a single shot. Plugging
α1,2,3,4 into Eq. (1), Eq. (2), and Eq. (3), we could deduce that the Stokes parameters S0,1,2 can be
directly calculated from Iα1,2,3,4

:
S0 = 1

2 (Iα1 + Iα2 + Iα3 + Iα4) = Iα1 + Iα3 = Iα2 + Iα4

S1 = Iα3 − Iα1

S2 = Iα4
− Iα2

, (5)

making the acquisition of p and θ much more easily.

B. Additional results on synthetic data

In this section, we provide additional visual quality comparisons on synthetic data among our
framework, the state-of-the-art polarized image low-light enhancement method PLIE [10] and its
improved version PLIE+, the only existing polarized image deblurring method PolDeblur [11] and
its improved version PolDeblur+, and four learning-based image enhancement methods designed
for conventional images that also fuse noisy and blurry pairs (LSD2 [6], LSFNet [1], SelfIR [7], and
D2HNet [8]), as shown in Fig. A., Fig. B., and Fig. C..

C. Additional results on real data

In this section, we provide additional visual quality comparisons on real data among our framework,
the state-of-the-art polarized image low-light enhancement method PLIE [10] and its improved
version PLIE+, the only existing polarized image deblurring method PolDeblur [11] and its improved
version PolDeblur+, and four learning-based image enhancement methods designed for conventional
images that also fuse noisy and blurry pairs (LSD2 [6], LSFNet [1], SelfIR [7], and D2HNet [8]), as
shown in Fig. D., Fig. E., and Fig. F..
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Figure A.: Additional visual quality comparisons on synthetic data (part1).
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Figure B.: Additional visual quality comparisons on synthetic data (part2).
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Figure C.: Additional visual quality comparisons on synthetic data (part3).
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Figure D.: Additional visual quality comparisons on real data (part1).
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Figure E.: Additional visual quality comparisons on real data (part2).
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Figure F.: Additional visual quality comparisons on real data (part3).
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