
SPRINQL: Sub-optimal Demonstrations driven
Offline Imitation Learning

Huy Hoang
Singapore Management University

mh.hoang.2024@phdcs.smu.edu.sg

Tien Mai
Singapore Management University

atmai@smu.edu.sg

Pradeep Varakantham
Singapore Management University

pradeepv@smu.edu.sg

Abstract

We focus on offline imitation learning (IL), which aims to mimic an expert’s behav-
ior using demonstrations without any interaction with the environment. One of the
main challenges in offline IL is the limited support of expert demonstrations, which
typically cover only a small fraction of the state-action space. While it may not be
feasible to obtain numerous expert demonstrations, it is often possible to gather
a larger set of sub-optimal demonstrations. For example, in treatment optimiza-
tion problems, there are varying levels of doctor treatments available for different
chronic conditions. These range from treatment specialists and experienced general
practitioners to less experienced general practitioners. Similarly, when robots are
trained to imitate humans in routine tasks, they might learn from individuals with
different levels of expertise and efficiency.
In this paper, we propose an offline IL approach that leverages the larger set
of sub-optimal demonstrations while effectively mimicking expert trajectories.
Existing offline IL methods based on behavior cloning or distribution matching
often face issues such as overfitting to the limited set of expert demonstrations
or inadvertently imitating sub-optimal trajectories from the larger dataset. Our
approach, which is based on inverse soft-Q learning, learns from both expert
and sub-optimal demonstrations. It assigns higher importance (through learned
weights) to aligning with expert demonstrations and lower importance to aligning
with sub-optimal ones. A key contribution of our approach, called SPRINQL, is
transforming the offline IL problem into a convex optimization over the space of Q
functions. Through comprehensive experimental evaluations, we demonstrate that
the SPRINQL algorithm achieves state-of-the-art (SOTA) performance on offline
IL benchmarks. Code is available at https://github.com/hmhuy0/SPRINQL.

1 Introduction

Reinforcement learning (RL) has established itself as a strong and reliable framework for sequential
decision-making with applications in diverse domains: robotics [19, 18], healthcare [34, 28, 27], and
environment generation [9, 24]. Unfortunately, RL requires an underlying simulator that can provide
rewards for different experiences, which is usually not available.

Imitation Learning (IL) [16, 29, 13, 17] handles the lack of reward function by utilizing expert
demonstrations to guide the learning scheme to compute a good policy. However, IL approaches
still require the presence of a simulator that allows for online interactions. Initial works in Offline
IL [35, 23, 40, 2] tackle the absence of simulator by considering an offline dataset of expert

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/hmhuy0/SPRINQL

demonstrations. These approaches extend upon Behavioral Cloning (BC), where we aim to maximize
the likelihood of the expert’s decisions from the provided dataset. The key advantage with BC is the
theoretical justification on converging to expert behaviors given sufficient trajectories. However, when
there are not enough expert trajectories, it often suffers from distributional shift issues [30]. Thus, a
key drawback of these initial IL approaches is the need for a large number of expert demonstration
datasets.

To deal with limited expert demonstrations, recent works utilize non-expert demonstration datasets
to reduce the reliance on only expert demonstrations. These additional non-expert demonstrations
are referred to as supplementary data. Directly applying BC to these larger supplementary datasets
will lead to sub-optimal policies, so most prior work in utilizing supplementary data attempts to
extract expert-like demonstrations from the supplementary dataset in order to expand the expert
demonstrations [31, 21, 20, 37, 39]. These works assume expert-like demonstrations are present
in the supplementary dataset and focus on identifying and utilizing those, while eliminating the
non-expert demonstrations. Eliminating non-expert trajectories can result in loss of key information
(e.g., transition dynamics) about the environment. Additionally, these works primarily rely on BC,
which is known to overlook the sequential nature of decision-making problems – a small error can
quickly accumulate when the learned policy deviates from the states experienced by the expert.

We develop our algorithm based on an inverse Q-learning framework that better captures the sequential
nature of the decision-making [13] and can operate under the more realistic assumption that the data
is collected from people/policies with lower expertise levels1 (not experts). To illustrate, consider
a scenario in robotic manipulation where the goal is to teach a robot to assemble parts. Expert
demonstrations might show precise and efficient methods to assemble parts, but are limited in number
due to the high cost and time associated with expert involvement. On the other hand, sub-optimal
demonstrations from novice users are easier to obtain and more abundant. Our SPRINQL approach
effectively integrates these sub-optimal demonstrations, giving appropriate weight to the expert
demonstrations to ensure the robot learns the optimal assembly method without overfitting to the
limited expert data or the inaccuracies in the sub-optimal data. We utilize these non-expert trajectories
to learn a Q function that contributes to our understanding of the environment and the ground truth
reward function.

Contributions: Overall, we make the following key contributions in this paper:
(i) We propose SPRINQL, a novel algorithm based on Q-learning for offline imitation learning with
expert and multiple levels of sub-optimal demonstrations.
(ii) We provide key theoretical properties of the SPRINQL objective function, which enable the
development of a scalable and efficient approach. In particular, we leverage distribution matching and
reward regularization to develop an objective function for SPRINQL that not only help address the
issue of limited expert samples but also utilizes non-expert data to enhance learning. Our objective
function is not only convex within the space of Q functions but also guarantees the return of a Q
function that lower-bounds its true value.
(iii) We provide an extensive empirical evaluation of our approach in comparison to existing best
algorithms for offline IL with sup-optimal demonstrations. Our algorithms provide state-of-the-art
(SOTA) performance on all the benchmark problems. Moreover, SPRINQL is able to recover a
reward function that shows a high positive correlation with the ground-truth rewards, highlighting a
unique advantage of our approach compared to other IL algorithms in this context.

1.1 Related Work

Imitation Learning. Imitation learning is recognized as a significant technique for learning from
demonstrations. It begins with BC, which aims to maximize the likelihood of expert demonstrations.
However, BC often under-performs in practice due to unforeseen scenarios [30]. To overcome this
limitation, Generative Adversarial Imitation Learning (GAIL) [16] and Adversarial Inverse Reinforce-
ment Learning (AIRL) [10] have been developed. These methods align the occupancy distributions
of the policy and the expert within the Generative Adversarial Network (GAN) framework [14].
Alternatively, Soft Q Imitation Learning (SQIL) [29] bypasses the complexities of adversarial training
by assigning a reward of +1 to expert demonstrations and 0 to the others, subsequently learning a
value function based on these rewards.While the aforementioned imitation learning algorithms show

1While there have been works [5, 6, 7] that have attempted to minimize the required demonstrations using
ranked datasets by preference-based RL, their algorithms are only applicable to online settings.

2

promise, they require interaction with the environment to obtain the policy distribution, which is
often impractical.

Offline Imitation Learning. ValueDICE [22] introduces a novel approach for off-policy training,
suitable for offline training, using Stationary Distribution Corrections [25, 26]. However, ValueDICE
necessitates adversarial training between the policy network and the Q network, which can make the
training slow and unstable. Recently, algorithms like PWIL [8] and IQ-learn [13] have optimized
distribution distance, offering an alternative to adversarial training schemes. Since such approaches
rely on occupancy distribution matching, a large expert dataset is often required to achieve the desired
performance. Our approach, SPRINQL is able to bypass this requirement of a large set of expert
demonstrations through the use of non-expert demonstrations (which are typically more available) in
conjunction with a small set of expert demonstrations.

Imitation Learning with Imperfect Demonstrations. T-REX [5] and D-REX [6] have shown that
utilizing noise-ranked demonstrations as a reference-based approach can return a better policy without
requiring expert demonstrations in online settings. Moreover, there are also several works [36, 33]
that utilize the GAN framework [14] for sub-optimal datasets and have achieved several successes.
Meanwhile, in the offline imitation learning context, TRAIL [38] utilizes sup-optimal demonstrations
to learn the environment’s dynamics. It employs a feature encoder to map the high-dimensional
state-action space into a lower dimension, thereby allowing for a scalable way of learning of dynamics.
This approach may face challenges in complex environments where predicting dynamics accurately
is difficult, as shown in our experimental results. Other works assume that they can extract expert-like
state-action pairs from the sub-optimal demonstration set and use them for BC with importance
sampling [31, 37, 39, 21, 20]. However, expert-like state-actions might be difficult to accurately
identify, as true reward information is not available. In contrast, our approach is more general, as we
do not assume that the sub-optimal set contains expert-like demonstrations. We also allow for the
inclusion of demonstrations of various qualities. Moreover, while prior works only recover policies,
our approach enables the recovery of both expert policies and rewards, justifying the use of our
method for Inverse Reinforcement Learning (IRL)[1].

2 Background

Preliminaries. We consider a MDP defined by the following tuple M = ⟨S,A, r, P, γ, s0⟩, where
S denotes the set of states, s0 represents the initial state set, A is the set of actions, r : S ×A → R
defines the reward function for each state-action pair, and P : S ×A → S is the transition function,
i.e., P (s′|s, a) is the probability of reaching state s′ ∈ S when action a ∈ A is made at state s ∈ S,
and γ is the discount factor. In reinforcement learning (RL), the aim is to find a policy that maximizes
the expected long-term accumulated reward maxπ

{
E(s,a)∼ρπ [r(s, a)]

}
, where ρπ is the occupancy

measure of policy π: ρπ(s, a) = (1− γ)π(a|s)
∑∞
t=1 γ

tP (st = s|π).

MaxEnt IRL The objective in MaxEnt IRL is to recover a reward function r(s, a) from a set of
expert demonstrations, DE . Let ρE be the occupancy measure of the expert policy. The MaxEnt IRL
framework [41] proposes to recover the expert reward function by solving

max
r

min
π

{
EρE [r(s, a)]− (Eρπ [r(s, a)]− Eρπ [log π(s, a)])

}
(1)

Intuitively, the aim is to find a reward function that achieves the highest difference between the
expected value of the expert policy and the highest expected value among all other policies (computed
through the min loop).

IQ-Learn Given a reward function r and a policy π, the soft Bellman equation is defined as
Bπr [Q](s, a) = r(s, a) + γEs′ [V π(s′)], where V π(s) = Ea∼π(a|s)[Q(s, a) − log π(a|s)]. The
Bellman equation Bπr [Q] = Q is contractive and always yields a unique Q solution [13]. In IQ-learn,
they further define an inverse soft-Q Bellman operator T π[Q] = Q(s, a)− γEs′ [V π(s′)]. [13] show
that for any reward function r(a, s), there is a unique Q∗ function such that Bπr [Q∗] = Q∗, and for a
Q∗ function in the Q-space, there is a unique reward function r such that r = T π[Q∗]. This result
suggests that one can safely transform the objective function of the MaxEnt IRL from r-space to the

3

Q-space as follows:

max
Q

min
π

Φ(π,Q) = Eρ[T π[Q](s, a))]− Eρπ [T π[Q](s, a)] + Eρπ [log π(s, a)] (2)

which has several advantages; [13] show that Φ(π,Q) is convex in π and linear in Q, implying that (2)
always yields a unique saddle point solution. In particular, (2) can be converted into a maximization
over the Q-space, making the training problem no longer adversarial.

3 SPRINQL

We now describe our inverse soft-Q learning approach, referred to as SPRINQL (Sub-oPtimal
demonstrations driven Reward regularized INverse soft Q Learning). We first describe the three key
components in the SPRINQL formulation:

(1) We formulate the objective function that enables matching the occupancy distribution of not just
expert demonstrations, but also sub-optimal demonstrations.

(2) To mitigate the effect of limited expert samples (and larger sets of sub-optimal samples) that
can bias the distribution matching of the first step to sub-optimal demonstrations, we introduce a
reward regularization term within the objective. This regularization term is to ensure reward function
allocates higher values to state-action pairs that appear in higher expertise demonstrations.

(3) We show that while this new objective does not have the same advantageous properties as the one
in inverse Q-learning [13], with some minor (yet significant) changes it is possible to restore all the
important properties.

3.1 Distribution Matching with Expert and Suboptimal Demonstrations

We consider a setting where there are demonstrations classified into several sets of different expertise
levels D1,D2,,DN , where D1 consists of expert demonstrations and all the other sets contains sub-
optimal ones. This setting is general than existing work in IL with sup-optimal demonstrations, which
typically assumes that there are only two quality levels: expert and sub-optimal. Let D =

⋃
i∈[N] Di

be the union of all the demonstration sets and ρ1, ..., ρN be the occupancy measures of the respective
expert policies. The ordering of expected values across different levels of expert policies would then
be given by:

Eρ1 [r∗(s, a)] > Eρ2 [r∗(s, a)] > ... > EρN [r∗(s, a)],
where r∗(., .) are the ground-truth rewards. Typically, the number of demonstrations in first level,
D1 is significantly lower than those from other expert levels, i.e., |D1| ≪ |Di|, for i = 2, ..., N The
MaxEnt IRL objective from Equation 1 can thus be adapted as follows:

max
r

min
π

∑
i∈[N]

wiEρi [r(s, a)]− Eρπ [r(s, a)] + Eρπ [log π(s, a)] (3)

where wi ≥ 0 is the weight associated with the expert level i ∈ [N] and we have w1 > w2 > ... > wN
and

∑
i∈[N] wi = 1. There are two key intuitions in the above optimization: (a) Expert level i

accumulates higher expected values than expert levels greater than i; and (b) Difference in values
accumulated by expert policies and the maximum of all other policies is maximized. The optimization
term can be rewritten as:

EρU [r(s, a)]− Eρπ [r(s, a)]− Eρπ [log π(s, a)],

where ρU =
∑
i∈[N] wiρ

i. Here we note that the expected reward
∑
i∈[N] wiEρi [r(s, a)] is em-

pirically approximated by samples from the demonstration sets D1,D2,,DN . The number of
demonstrations in the best demonstration set D1 (i.e. the set of expert demonstrations) is significantly
lower when compared to other demonstration sets. So, an empirical approximation of Eρ1 [r(s, a)]
using samples from D1 would be inaccurate.

3.2 Regularization with Reference Reward

We create a reference reward based on the provided expert and sub-optimal demonstrations and utilize
the reference function to compute a regularization term that is added to the objective of Equation 3.

4

Concretely, we define a reference reward function r(s, a) such that:

r(s, a) > r(s′, a′),∀(s, a) ∈ D1 and (s′, a′) /∈ D1 and

r(s, a) > r(s′, a′),∀(s, a) ∈ D2 and ∀(s′, a′) /∈ D2 ∪ D1 and so on

The aim here is to assign higher rewards to demonstrations from higher expertise levels, and zero
rewards to those that do not belong to provided demonstrations. We will discuss how to concretely
estimate such reference reward values later.

We utilize this reference reward as part of the reward regularization term, which is added into the
MaxEntIRL objective in (3) as follows:

max
r

min
π

{
EρU [r(s, a)]− Eρπ [r(s, a)] + Eρπ [log π(s, a)]︸ ︷︷ ︸

Occupancy matching

−αEρU [(r(s, a)− r(s, a))2]︸ ︷︷ ︸
Reward regularizer

}
(4)

where α > 0 is a weight parameter for the reward regularizer term. With (4), the goal is to find
a policy with an occupancy distribution that matches with the occupancy distribution of different
expertise levels appropriately (characterized by the weights, wi). Simultaneously, it ensures that the
learning rewards are close to the pre-assigned rewards, aiming to guide the learning policy towards
replicating expert demonstrations, while also learning from sub-optimal demonstrations.

3.3 Concave Lower-bound on Inverse Soft-Q with Reward Regularizer

Even though (4) can be directly solved to recover rewards, prior research suggests that transforming
(4) into the Q-space will enhance efficiency. We delve into this transformation approach in this
section. As discussed in Section 2, there is a one-to-one mapping between any reward function r and
a function Q in the Q-space. Thus, the maximin problem in (4) can be equivalently transformed as:

max
Q

min
π

{
H(Q, π)

def
= EρU [T π[Q](s, a))]− Eρπ [T π[Q](s, a))] + Eρπ [log π(s, a)]

− αEρU [(T π[Q](s, a))− r(s, a))2]
}

(5)

where r(s, a) is replaced by T π[Q](s, a) and

T π[Q](s, a) = Q(s, a)− γEs′ [V π(s′)], V π(s) = Ea∼π(a|s)[Q(s, a)− log π(a|s)]

In the context of single-expert-level, [13] demonstrated that the objective function in the Q-space as
given in Equation 2 is concave in Q and convex in π, implying that the maximin problem always has
a unique saddle point solution. Unfortunately, this property does not hold in our case.

Proposition 3.1. H(Q, π) (as defined in Equation 5) is concave in Q but is not convex in π.

In general, we can see that the first and second term of (6) are convex in Q, but the reward regularizer
term, which can be written as

αEρU
[
(Q(s, a)− r(s, a)− Es′∼P (.|s,a)Ea′∼π(.|s′)(Q(s′, a′)− log π(s′, a′)))2

]
,

is not concave in π (details are shown in the Appendix). The property indicated in Proposition 3.1
implies that the maximin problem within the Q-space maxQminπ J(Q, π) may not have a unique
saddle point solution and would be more challenging to solve, compared to the original inverse
IQ-learn problem.

Another key property of Equation 2 is with regards to the inner minimization problem over π, which
yields a unique closed-form solution, enabling the transformation of the max-min problem into a
non-adversarial concave maximization problem within the Q-space. The closed-form solution was
given by πQ = argmaxπ V π(s) for all s ∈ S. Unfortunately, this result also does not hold with the
new objective function in (6), as formally stated below:

Proposition 3.2. H(Q, π) may not necessarily be minimized at π∗ such that π∗ = argmaxπ V π(s),
for all s ∈ S.

5

To overcome the above challenges, our approach involves constructing a more tractable objective
function that is a lower bound on the objective of (6). Let us first define Γ(Q) = minπH(Q, π). We
then look at the regularization term, which causes all the aforementioned challenges, and write:

(T π[Q](s, a))−r(s, a))2 = (Q(s, a)− r(s, a)− Es′ [V
π(s′)])2

= (Q(s, a)− r(s, a))2 + (Es′ [V
π(s′)])2 + 2(r(s, a)−Q(s, a))Es′ [V

π(s′)]

We then take out the negative part of (r(s, a)−Q(s, a)) using ReLU, and consider a slightly new
objective function as follows:

Ĥ(Q, π)
def
=

∑
i∈[N]

wiEρi [T π[Q](s, a))]− (Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)])

− αEρU
[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s′)

]
(6)

Let Γ̂(Q) = minπ Ĥ(Q, π)). The proposition below shows that Γ̂(Q) always lower-bounds Γ(Q).

Proposition 3.3. For any Q ≥ 0, we have Γ̂(Q) ≤ Γ(Q) and maxQ Γ̂(Q) ≤ maxQ Γ(Q). Moreover,
Γ(Q) = Γ̂(Q) if Q(s, a) ≤ r(s, a) for all (s, a).

We note that assuming Q ≥ 0 is not restrictive, as if the expert’s rewards r∗(s, a) are non-negative
(typically the case), then the true soft-Q function, defined as Q∗(s, a) = E[

∑
st,at

γt(r∗(s, a) −
log π(s, a))|(s0, a0) = (s, a)], should also be non-negative, for any π. As Γ̂(Q) provides a lower-
bound approximation of Γ(Q), maximizing Γ̂(Q) over the Q-space would drive Γ(Q) towards its
maximum value. It is important to note that, given that the inner problem involves minimization,
obtaining an upper-bound approximation function is easier. However, since the outer problem is a
maximization one, an upper bound would not be helpful in guiding the resulting solution towards
optimal ones. The following theorem indicates that Γ̂(Q) is more tractable to use.

Theorem 3.4. For any Q ≥ 0, the following results hold: (i) The inner minimization problem
minπ Ĥ(Q, π) has a unique optimal solution πQ such that πQ = argminπV

π(s) for all s ∈ S and

πQ(a|s) = exp(Q(s,a))∑
a exp(Q(s,a)) , (ii) maxπ V

π(s) = log(
∑
a exp(Q(s, a)))

def
= V Q(s), and (iii) Γ̂(Q) is

concave for Q ≥ 0.

The above theorem tells us that new objective Γ̂(Q) has a closed form where V π(s) is replaced by
V Q(s). Moreover Γ̂(Q) is concave for all Q ≥ 0. The concavity is particularly advantageous, as it
guarantees that the optimization objective is well-behaved and has a unique solution Q∗ such that
(Q∗, πQ

∗
) form a unique saddle point of maxQminπ Ĥ(Q, π). Thus, our tractable objective has

all the nice properties that the original IQ-Learn objective had, while being able to work for the
offline case with multiple levels of expert trajectories and our reward regularizer.

3.4 SPRINQL Algorithm

Algorithm 1 SPRINQL: Inverse soft-Q Learning
with Sub-optimal Demonstrations
Require: (D1,D2, ...,DN), (w1, w2, ..., wN), rη, Qψ, πθ
1: # estimate reward reference function
2: for iteration i...Ne do
3: d← (d1, d1, ..., dN) ∼ (D1,D2, ...,DN)
4: from dataset d, calculate L(rη) by (7)
5: η ← η −∇ηL(rη)
6: end for
7: # train SPRINQL
8: for iteration i...N do
9: d← (d1, d1, ..., dN) ∼ (D1,D2, ...,DN)
10: # Update Q function
11: from dataset d, calculate ĤC(Qψ, πθ) by (8)
12: ψ ← ψ +∇ψĤC(Qψ, πθ)

13: # Update policy for actor-critic

14: θ ← θ +∇
[
E s∼d
a∼πθ(a|s)

[Qψ(s, a)− ln(πθ(a|s))]
]

15: end for

Algorithm 1 provides the overall SPRINQL al-
gorithm. We first estimate the reference rewards
in lines 2-6 of Algorithm 1 and the overall pro-
cess is described in Section 3.4.1. Before we
proceed to the overall training, we have to esti-
mate the weights, wi (associated with the ranked
demonstration sets) employed in Ĥ(Q, π). We
provide a description of this estimation proce-
dure in Section 3.4.2. Finally, to enhance sta-
bility and mitigate over-estimation issues com-
monly encountered in offline Q-learning, we em-
ploy a conservative version of Ĥ(Q, π) in lines
8-15 of the algorithm and is described in Sec-
tion 3.4.3. Some other practical considerations
are discussed in the appendix.

6

3.4.1 Estimating the Reference Reward

We outline our approach to automatically infer the reference rewards r(s, a) from the ranked demon-
strations. The general idea is to learn a function that assigns higher values to higher expert-level
demonstrations. To achieve this, let us define R(τ) =

∑
(s,a)∈τ r(s, a) (i.e., accumulated reward

of trajectory τ). For two trajectories τi, τj , let τi ≺ τj denote that τi is lower in quality com-
pared to τj (i.e., τi belongs to demonstrations from lower-expert policies, compared to τj). We
follow the Bradley-Terry model of preferences [4, 5] to model the probability P (τi ≺ τj) as
P (τi ≺ τj) =

exp(R(τj))
exp(R(τi))+exp(R(τj))

and use the following loss function:

min
r

{L(r) =
∑
i∈[N]

∑
(s,a),(s′,a′)∈Di

(r(s, a)− r(s′, a′))2 −
∑

h,k∈[N],h>k,τi∈Dh,τj∈Dk
lnP (τi ≺ τj)} (7)

where the first term of L(r) serves to guarantee that the reward reference values for (s, a) pairs within
the same demonstration group are similar, and the second term aims to increase the likelihood that
the accumulated rewards of trajectories adhere to the expert-level order. Importantly, it can be shown
below that L(r) is convex in r (Proposition 3.5), making the learning well-behaved. In practice, one
can model r(s, a) by a neural network of parameters θ and optimize L(θ) over θ-space.
Proposition 3.5. L(r) is strictly convex in r.

3.4.2 Preference-based Weight Learning for wi

Each weight parameter wi used in (4) should reflect the quality of the corresponding demonstration
set Di, which can be evaluated by estimating the average expert rewards of these sets. Although
this information is not directly available in our setting, the reward reference values discussed earlier
provide a convenient and natural way to estimate them. This leads to the following formulation for

inferring the weights wi from the ranked data: wi =
E(s,a)∼Di [r̄(s,a)]∑

j∈[N] E(s,a)∼Dj [r̄(s,a)]
.

3.4.3 Conservative soft-Q learning

Over-estimation is a common issue in offline Q-learning due to out-of-distribution actions and
function approximation errors [11]. We also observe this in our IL context. To overcome this issue
and enhance stability, we leverage the approach in [23] to enhance our inverse soft-Q learning. The
aim is to learn a conservative soft-Q function that lower-bounds its true value. We formulate the
conservative inverse soft-Q objective as:

ĤC(Q, π) = −β
∑

s∼D, a∼µ(a|s)

[Q(s, a)] + Ĥ(Q, π) (8)

where µ(a|s) is a particular state-action distribution. We note that in (8), the conservative term is
added to the objective function, while in the conservative Q-learning algorithm [23], this term is
added to the Bellman error objective of each Q-function update. This difference makes the theory
developed in [23] not applicable. In Proposition 3.6 below, we show that solving maxQ ĤC(Q) will
always yield a Q-function that is a lower bound to the Q function obtained by solving maxQ Ĥ(Q, π).

Proposition 3.6. Let Q̂ = argmaxQĤ(Q, π) and Q̂C = argmaxQĤC(Q, π), we have∑
s∼D

a∼µ(a|s)
Q̂C(s, a) ≤

∑
s∼D

a∼µ(a|s)
Q̂(s, a).

We can adjust the scale parameter β in Equation 8 to regulate the conservativeness of the objective.
Intuitively, if we optimize Q over a lower-bounded Q-space, increasing the scale parameter β will
force each Q(s, a) towards its lower bound. Consequently, when β is sufficiently large, Q̂C will
point-wise lower-bound Q̂, i.e., Q̂C(s, a) ≤ Q̂(s, a) for all (s, a).

4 Experiments

4.1 Experiment Setup

Baselines. We compare our SPRINQL with SOTA algorithms in offline IL with sub-optimal
demonstrations: TRAIL [38], DemoDICE [21], and DWBC [37]. Moreover, we also compare with

7

other straightforward baselines: BC with only sub-optimal datasets (BC-O), BC with only expert
data (BC-E), BC with all datasets (BC-both), and BC with fixed weight for each dataset (W-BC),
SQIL [29], and IQ-learn [13] with only expert data. In particular, since TRAIL, DemoDICE, and
DWBC were designed to work with only two datasets (one expert and one supplementary), in
problems with multiple sub-optimal datasets, we combine all the sub-optimal datasets into one single
supplementary dataset. Meanwhile, BC-E, BC-O, and BC-both combine all available data into a large
dataset for learning, while W-BC optimizes

∑
i Es,a∼Di−wi ln(π(a|s)), where wi are our weight

parameters. T-REX [5] is a PPO-based IL algorithm that can work with ranked demonstrations. It
is, however, not suitable for our offline setting, so we do not include it in the main comparisons.
Nevertheless, we will later conduct an ablation study to compare SPRINQL with an adapted version
of T-REX. Moreover, [15] developed IPL for learning from offline preference data. This approach
requires comparisons between every pair of trajectories, thus is not suitable for our context.

Environments and Data Generation: We test on five Mujoco tasks [32] and four arm manipulation
tasks from Panda-gym [12]. The maximum number transition of (s, a) per trajectory is 1000 (or 1k for
short) for the Mujoco and is 50 for Panda-gym tasks (descriptions in Appendix B.3). The sub-optimal
demonstrations have been generated by randomly adding noise to expert actions and interacting with
the environments. We generated large datasets of expert and non-expert demonstrations. For each
seed, we randomly sample subsets of demonstrations for testing. This approach allows us to test with
different datasets across seeds, rather than using fixed datasets for all seeds as in previous works.
More details of these generated databases can be found in the Appendix B.4.

Metric: The return is normalized by score = return−R.return
E.return−R.return × 100 where R.return is the

mean return of random policy and E.return is the mean return of the expert policy. The scores are
calculated by taking the last ten evaluation scores of each seed, with five seeds per report.

Experimental Concerns. Throughout the experiments, we aim to answer the following questions:
(Q1) How does SPRINQL perform compared to other baselines? (Q2) How do the distribution
matching and reward regularization terms impact the performance of SPRINQL? (Q3) What happens
if we augment (or reduce) the expert data while maintaining the sub-optimal datasets? (Q4) What
happens if we augment (or reduce) the sub-optimal data while maintaining the expert dataset? (Q5)
How does the conservative term help in our approach? (Q6) How does increasing N (the number
of expertise levels) affect the performance of SPRINQL? (Q7) Does the preference-based weight
learning approach provide good values for the weights wi? (Q8) How does SPRINQL perform in
recovering the ground-truth reward function?

4.2 Main Comparison Results

In this section, we provide comparison results to answer (Q1) with three datasets (i.e., N = 3).
Additional comparison results for N = 2 can be found in the appendix. From lowest to highest

Mujoco Panda-gym

Cheetah Ant Humanoid Push PnP Slide Avg

BC-E -3.2±0.9 6.4±19.1 1.3±0.2 8.2±3.8 3.7±2.7 0.0±0.0 2.7
BC-O 14.2±2.9 35.2±20.1 10.6±6.3 8.8±4.5 3.9±2.7 0.1±0.3 12.1
BC-both 13.2±3.6 47.0±5.9 9.0±3.5 9.0±4.3 4.4±3.0 0.1±0.4 13.8
W-BC 12.9±2.8 47.3±6.4 19.6±19.0 8.8±4.3 3.7±2.8 0.0±0.0 15.4
TRAIL -4.1±0.3 -4.7±1.9 2.6±0.6 11.7±4.0 7.8±3.7 1.7±1.8 3.9
IQ-E -3.4±0.6 -3.4±1.3 2.4±0.6 26.3±10.9 18.1±12.5 0.1±0.4 6.7
IQ-both -6.1±1.4 -58.2±0.0 0.8±0.0 8.3±3.9 3.8±3.3 0.0±0.2 -8.6
SQIL-E -5.0±0.7 -33.8±7.4 0.9±0.1 9.6±3.3 3.2±2.9 0.1±0.3 -4.2
SQIL-both -5.6±0.5 -58.0±0.4 0.8±0.0 8.2±3.8 3.3±2.3 0.1±0.3 -12.6
DemoDICE 0.4±2.0 31.7±8.9 2.6±0.8 8.1±3.7 4.3±2.4 0.1±0.5 7.9
DWBC -0.2±2.5 10.4±5.0 3.7±0.3 36.9±7.4 25.0±6.3 11.6±4.4 14.6

SPRINQL (ours) 73.6±4.3 77.0±5.6 82.9±11.2 72.0±5.3 63.2±6.4 37.7±6.6 67.7

Table 1: Comparison results for three Mujoco and three Panda-gym tasks.

8

expertise levels, we randomly sample (25k-10k-1k) transitions for Mujoco tasks and (10k-5k-100)
transitions for Panda-gym tasks for every seed (details of these three-level dataset are provided in
Appendix B.4). Table 1 shows comparison results across 3 Mujoco tasks and 3 Panda-gym tasks
(the full results for all the nine environments are provided in Appendix C.1). In general, SPRINQL
significantly outperforms other baselines on all the tasks.

4.3 Ablation Study - No Distribution Matching and No Reward Regularizer

We aim to assess the importance of the distribution matching and reward regularizer terms in our
objective (Q2). To this end, we conduct an ablation study comparing SPRINQL with two variants:
(i) noReg-SPRINQL, derived by removing the reward regularizer term from (6), and (ii) noDM-
SPRINQL, obtained by removing the distribution matching term from (6). Here, we note that the
noDM-SPRINQL performs Q-learning using the reward reference function, this can viewed as an
adaption of the T-REX algorithm [5] to our offline setting. The conservative Q-learning term is
employed in the SPRINQL and the two variants to enhance stability. The comparisons for N = 2
and N = 3 on five Mujoco tasks are shown in Figure 1 (the full comparison results for all tasks are
provided in the appendix). These results clearly show that SPRINQL outperforms the other variants,
indicating the value of both terms in our objective function.

Cheetah

2 3
number of levels

0

50

100
Ant

2 3
number of levels

0

50

100
Walker

2 3
number of levels

0

50

100

Hopper

2 3
number of levels

0

50

100
Humanoid

2 3
number of levels

0

50

100

noReg-SPRINQL noDM-SPRINQL SPRINQL expert

Figure 1: Comparison of three variants of SPRINQL across five Mujoco environments.

4.4 Other Experiments

Experiments addressing the other questions are provided in the appendix. Specifically, Sections C.1
and C.2 provide full comparison results for all the Mujoco and Panda-gym tasks for three and two
datasets (i.e., N = 3 and N = 2), complementing the answer to Q1. Section C.3 provides the
learning curves of the three variants considered in Section 4.3 above (answering Q2). Section C.4
provides experiments to answer Q3 (what would happen if we augment the expert dataset?) and
Section C.5 addresses Q4 (what would happen if we augment the sub-optimal dataset?). Section C.6
experimentally shows the impact of the conservative term in our approaches (i.e., Q5). Section C.7 re-
ports the performance of SPRINQL with varying numbers of expertise levels N (i.e., Q6). Section C.8
addresses Q7, and Section C.10 shows how SPRINQL performs in terms of reward recovering (i.e.
Q8). In addition, Section C.11 reports the distributions of the reference rewards and Section C.12
provides α choosing range.

Concretely, our extensive experiments reveal the following: (i) SPRINQL outperforms other baselines
with two, three, or even larger numbers of datasets; (ii) the conservative term, distribution matching,
and reward regularizer terms are essential to our objective—all three significantly contribute to
the success of SPRINQL; (iii) the preference-based weight learning provides good estimates for
the weights wi; and (iv) SPRINQL performs well in recovering rewards, showing a high positive
correlation with the ground-truth rewards, justifying the use of our method for IRL.

5 Conclusion and Limitations

(Conclusion) We have developed SPRINQL, a novel non-adversarial inverse soft-Q learning algo-
rithm for offline imitation learning from expert and sub-optimal demonstrations. We have demon-
strated that our algorithm possesses several favorable properties, contributing to its well-behaved,
stable, and scalable nature. Additionally, we have devised a preference-based loss function to au-
tomate the estimation of reward reference values. We have provided extensive experiments based
on several benchmark tasks, demonstrating the ability of our SPRINQL algorithm to leverage both
expert and non-expert data to achieve superior performance compared to state-of-the-art algorithms.

9

(Limitations) Some limitations of this work include: (i) SPRINQL (and other baselines) still requires
a large amount of sub-optimal datasets with well-identified expertise levels to learn effectively, (ii)
there is a lack of theoretical investigation on how the sizes of the expert and non-expert datasets affect
the performance of Q-learning, which we find challenging to address, and (iii) it lacks a theoretical
exploration of how the reward regularizer term enhances the distribution matching term when expert
samples are low—this question is relevant and interesting but also challenging to address. These
limitations will pave the way for our future work.

Acknowledgement

This research is supported by the National Research Foundation Singapore and DSO National
Laboratories under the Al Singapore Programme (AISG Award No: AISG2-RP-2020-016) and Lee
Kuan Yew Fellowship awarded to Pradeep Varakantham.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.
[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision making? In The Eleventh
International Conference on Learning Representations, 2022.

[3] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[4] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[5] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[6] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[7] Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration
via self-supervised reward regression. In Conference on robot learning, pages 1262–1277.
PMLR, 2021.

[8] Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal wasserstein
imitation learning. In ICLR, 2021.

[9] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew
Critch, and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised
environment design. Advances in neural information processing systems, 33:13049–13061,
2020.

[10] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[12] Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-
gym: Open-source goal-conditioned environments for robotic learning. arXiv preprint
arXiv:2106.13687, 2021.

[13] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems,
34:4028–4039, 2021.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

10

[15] Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. Advances in Neural Information Processing Systems, 36, 2023.

[16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

[17] Huy Hoang, Tien Mai, and Pradeep Varakantham. Imitate the good and avoid the bad: An
incremental approach to safe reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 12439–12447, 2024.

[18] Minh-Huy Hoang, Long Dinh, and Hai Nguyen. Learning from pixels with expert observations.
In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1200–1206, 2023.

[19] Ozsel Kilinc and Giovanni Montana. Reinforcement learning for robotic manipulation using
simulated locomotion demonstrations. Machine Learning, pages 1–22, 2022.

[20] Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, and Kee-Eung Kim. Lobs-
dice: Offline learning from observation via stationary distribution correction estimation. Ad-
vances in Neural Information Processing Systems, 35:8252–8264, 2022.

[21] Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect
demonstrations. In International Conference on Learning Representations, 2021.

[22] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribu-
tion matching. In International Conference on Learning Representations, 2019.

[23] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–
1191, 2020.

[24] Wenjun Li and Pradeep Varakantham. Generalization through diversity: Improving unsupervised
environment design. International Joint Conference on Artificial Intelligence, 2023.

[25] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation
of discounted stationary distribution corrections. Advances in neural information processing
systems, 32, 2019.

[26] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Al-
gaedice: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[27] Mila Nambiar, Supriyo Ghosh, Priscilla Ong, Yu En Chan, Yong Mong Bee, and Pavitra
Krishnaswamy. Deep offline reinforcement learning for real-world treatment optimization
applications. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 4673–4684, 2023.

[28] Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo Celi, Peter Szolovits, and Marzyeh
Ghassemi. Deep reinforcement learning for sepsis treatment. arXiv preprint arXiv:1711.09602,
2017.

[29] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

[30] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[31] Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In
International Conference on Learning Representations, 2020.

[32] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[33] Yunke Wang, Chang Xu, Bo Du, and Honglak Lee. Learning to weight imperfect demonstrations.
In International Conference on Machine Learning, pages 10961–10970. PMLR, 2021.

[34] Wei-Hung Weng, Mingwu Gao, Ze He, Susu Yan, and Peter Szolovits. Representation and
reinforcement learning for personalized glycemic control in septic patients. arXiv preprint
arXiv:1712.00654, 2017.

11

[35] Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
ArXiv, abs/1911.11361, 2019.

[36] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama.
Imitation learning from imperfect demonstration. In International Conference on Machine
Learning, pages 6818–6827. PMLR, 2019.

[37] Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline
imitation learning from suboptimal demonstrations. In Proceedings of the 39th International
Conference on Machine Learning, pages 24725–24742, 2022.

[38] Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with
suboptimal data. In International Conference on Learning Representations, 2021.

[39] Lantao Yu, Tianhe Yu, Jiaming Song, Willie Neiswanger, and Stefano Ermon. Offline imitation
learning with suboptimal demonstrations via relaxed distribution matching. In Proceedings of
the AAAI conference on artificial intelligence, volume 37, pages 11016–11024, 2023.

[40] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K. Prasanna. Brac+: Improved behavior
regularized actor critic for offline reinforcement learning. ArXiv, abs/2110.00894, 2021.

[41] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

12

A Missing Proofs

We provide proofs for the theoritical results claimed in the main paper.

Proposition 3.1 J(Q, π) is concave in Q but is not convex in π.

Proof. We recall that

J(Q, π) =
∑
i∈[N]

wiEρi [T π[Q](s, a))]− Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)]

− αEρU [(T π[Q](s, a))− r(s, a))2] (9)

where T π[Q](s, a)) = Q(s, a) − γEs′∼P (s′|s,a)[V
π(s′)] and V π(s) = Ea∼π(a|s)[Q(s, a) −

log π(a|s)]. We see that T π[Q](s, a) is linear in Q for any (s, a). Thus, the first and second
terms of J(Q, π) in (9) are linear in Q. The last term of (9) involves a sum of squares of linear
functions of Q, which are convex. So, J(Q, π) is concave in Q.

To see that J(Q, π) is generally not convex in π, we will consider a quadratic component of the
reward regularization term (T π[Q](s, a))− r(s, a))2 and show that there is an instance of Q and r
values that makes this term convex. We first write:

T π[Q](s, a))− r(s, a) = Q(s, a)− γ
∑
s′

P (s′|s, a)V π(s′)− r(s, a)

= Q(s, a)− γ
∑
s′

P (s′|s, a)
∑
a′′

π(a′′|s′)(Q(s′, a′′)− log π(a′′|s′))− r(s, a)

For simplification, let us choose Q(s′, a′′) = 0 for all s′ such that P (s′|s, a) > 0. This allows us to
simplify T π[Q](s, a))− r(s, a) as

T π[Q](s, a))− r(s, a) = γ
∑
s′

P (s′|s, a)
∑
a′′

π(a′′|s′) log π(a′′|s′) +Q(s, a)− r(s, a)

We further see that, for any s ∈ S,
∑
a∈A π(a|s) log π(a|s) achieves its minimum value at π(a|s) =

1/|A| for all a ∈ |A|, and
∑
a∈A π(a|s) log π(a|s) ≥ log 1/|A| for any policy π. As a result we

have:
γ
∑
s′

P (s′|s, a)
∑
a′′

π(a′′|s′) log π(a′′|s′) ≥ γ log
1

|A|

So if we select Q(s, a) such that Q(s, a)− r(s, a)− γ log |A| ≥ 0, then T π[Q](s, a))− r(s, a) ≥ 0

for any π. Now we consider the quadratic function Γ(π) = (λ(π))
2 where λ(π) = T π[Q](s, a))−

r(s, a). Since each term π(a′′) log π(a′′|s′) is convex in π, λ(π) is convex in π. To show Γ(π) is
convex in π, we will show that for any two policies π1, π2 and α ∈ [0, 1], Γ(απ1 + (1− α)π2) ≤
αΓ(π1) + (1− α)Γ(π). To this end, we write

αΓ(π1) + (1− α)Γ(π)
(a)

≥ (αλ(π1) + (1− α)λ(π2))
2

(b)

≥ (λ(απ1 + (1− α)π2))
2

= Γ(απ1 + (1− α)π2)

where (a) is because the function h(t) = t2 is convex in t, and (b) is because

(i) αλ(π1) + (1− α)λ(π2) ≥ λ(απ1 + (1− α)π2) (as λ(π) is convex in π)

(ii) αλ(π1) + (1 − α)λ(π2) and λ(απ1 + (1 − α)π2) are both non-negative, and function
h(t) = t2 is increasing for all t ≥ 0.

So, we see that with the Q values chosen above, function (T π[Q](s, a))− r(s, a))2) is convex and
−α(T π[Q](s, a)− r(s, a))2 is concave. So, intuitively, when α is sufficiently large, J(Q, π) would
be almost concave (so not convex), which is the desired result.

13

Proposition 3.2 J(Q, π) may not necessarily be minimized at πQ such that πQ = argmaxπ V π(s),
for all s ∈ S.

Proof. We first write J(Q, π) as

J(Q, π) =
∑
i∈[N]

wiEρi [T π[Q](s, a))]− Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)]

− αEρU [(T π[Q](s, a))− r(s, a))2]

=
∑
i∈[N]

wiEρi [Q(s, a)− γEs′V π(s′)]− (1− γ)Es0V π(s0)

− αEρU [(Q(s, a)− r(s, a)− γEs′V π(s′))2] (10)

We then see that the terms Eρi [Q(s, a) − γEs′V π(s′)] and −γEs0V π(s0) are minimized (over π)
when V π(s), for all s, are maximized. We will prove that it would not be the case for the last term.
Let us choose Q and r such that Q(s, a) − r(s, a) > γEs′V πQ(s′). We see that for any policy
π ̸= πQ, we have

Q(s, a)− r(s, a) > γEs′V πQ(s′) ≥ Es′V π(s′)

Thus, Q(s, a)− r(s, a)− V π(s′) ≥ Q(s, a)− r(s, a)− V πQ(s′) > 0

which implies that

−αEρU [(Q(s, a)− r(s, a)− γEs′V π(s′))2] ≤ −αEρU [(Q(s, a)− r(s, a)− γEs′V πQ(s′))2]

So the last term of (10) would not be minimized at π = πQ. In fact, in the above scenario, this last
term will be maximized at π = πQ. As a result, there is always α sufficiently large such that the last
term significantly dominates the other terms and J(Q, π) is not minimized at π = πQ.

Proposition 3.3 For any Q ≥ 0, we have Γ̂(Q) ≤ Γ(Q) and maxQ≥0 Γ̂(Q) ≤ maxQ≥0 Γ(Q).
Mover, Γ(Q) = Γ̂(Q) if Q(s, a) ≤ r(s, a) for all s, a.

Proof. We first write Ĥ(Q, π) as

Ĥ(Q, π) =
∑
i∈[N]

wiEρi [T π[Q](s, a))]− Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)]

− αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s)

]
(11)

Since Q ≥ 0, V π(s) = Ea∼π(.|s)[Q(s, a) − log π(a|s)] ≥ 0. Thus 2ReLU(r(s, a) −
Q(s, a))Es′V π(s) ≥ 2(r(s, a)−Q(s, a))Es′V π(s). As a result, the last term of Ĥ(Q, π) is bounded
as

− αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s)

]

≤ −αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 − 2(Q(s, a)− r(s, a))Es′V π(s)

]
= −αEρU [(T π[Q](s, a)− r(s, a))2]

It then follows that Ĥ(Q, π) ≤ J(Q, π). Thus, minπ Ĥ(Q, π) ≤ minπ J(Q, π) or Γ̂(Q) ≤ Γ(Q).
Mover, we see that if r(s, a) ≥ Q(s, a) for all (s, a), then 2ReLU(r(s, a) − Q(s, a))Es′V π(s) =

2(r(s, a)−Q(s, a))Es′V π(s), implying that Ĥ(Q, π) = J(Q, π) and Γ̂(Q) = Γ(Q). This completes
the proof.

14

Theorem 3.4 For any Q ≥ 0, the following results hold

(i) The inner minimization problem minπ Ĥ(Q, π) has a unique optimal solution π∗ such that
πQ = argminπV

π(s) for all s ∈ S and

πQ(a|s) = exp(Q(s, a))∑
a exp(Q(s, a))

.

(ii) maxπ V
π(s) = log(

∑
a exp(Q(s, a)))

def
= V Q(s).

(iii) Γ̂(Q) is concave for Q ≥ 0

Proof. We first rewrite the formulation of Ĥ(Q, π) as

Ĥ(Q, π) =
∑
i∈[N]

wiEρi [Q(s, a)− γEs′V π(s′)]− (1− γ)Es0V π(s0)

− αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s)

]

We then see that the first and second term of Ĥ(Q, π) are minimized when V π(s) are minimized,
i.e., at π = πQ. For the last term, since V π(s) ≥ 0 (because Q ≥ 0), −(Es′V π(s′))2 and
−2ReLU(r(s, a)−Q(s, a))Es′V π(s) are also minimized at π = πQ. So, Ĥ(Q, π) is minimized at
π = πQ as desired.

(ii) is already proved in [13].

For (iii), we rewrite Ĥ(Q, π) as

Ĥ(Q, π) =
∑
i∈[N]

wiEρi [T π[Q](s, a)]− (1− γ)Es0,a∼π(a|s0)[Q(s0, a)− log π(a|s0)]

− αEρU

[
(r(s, a)−Q(s, a)) + Es′V π(s))2

]
+ αEρU

[
(min{0, r(s, a)−Q(s, a))

]
=

∑
i∈[N]

wiEρi [T π[Q](s, a)]− (1− γ)Es0,a∼π(a|s0)[Q(s0, a)− log π(a|s0)]

− αEρU

[
(r(s, a)−Q(s, a)) + Es′V π(s))2

]
+ αEρU

[
(min{0, r(s, a)−Q(s, a))

]
(12)

Then, the first and second terms of (12) is linear in Q. The fourth term is concave. For third term, let
Φ(Q) = |r(s, a)−Q(s, a)|+ Es′V π(s). We see that Φ(Q) ≥ 0 for any Q ≥ 0 and Φ(Q) is convex
in Q (because V π(s) is linear in Q). It then follows that, for any η ∈ [0, 1] and Q1, Q2 ≥ 0, we have

η(Φ(Q))2 + (1− η)(Φ(Q))2
(a)

≥ (ηΦ(Q) + (1− η)Φ(Q))2

(b)

≥ (Φ(ηQ1 + (1− η)Q2))
2 (13)

where (a) is due to the fact function h(t) = t2 is convex, and (b) is because h(t) = t2 is non-
decreasing for all t ≥ 0, and Φ(Q) is convex and always takes non-negative values. The last
inequality in(13) implies that (Φ(Q))2 is convex in Q. So the last term of (12) is concave in Q.
Putting all together we conclude that Ĥ(Q, π) is concave in Q as desired.

Proposition 3.5 L(r) is strictly convex in r.

15

Proof. We first write L(r) as

L(r) =
∑
i∈[N]

∑
(s,a),(s′,a′)∈Di

(r(s, a)− r(s′, a′))2 −
∑

h,k∈[N],h<k

τi∈Dh,τj∈Dk

ln
exp(R(τj))

exp(R(τj)) + exp(τi)()
+ ϕ(r)

(14)

=
∑
i∈[N]

∑
(s,a),(s′,a′)∈Di

(r(s, a)− r(s′, a′))2 −
∑

h,k∈[N],h<k

τi∈Dh,τj∈Dk

(
R(τj)

− ln (exp(R(τj)) + exp(R(τi))) + ϕ(r)
)

(15)

We then see that the first term is a sum of squares of linear functions of r, thus is strictly convex.
Moreover, since R(τi) is linear in r for any τi , the term ln(exp(R(τi)) + exp(R(τj))) has a log-
sum-exp form. So this term is convex as well [3]. Putting all together we see that L(r) is strictly
convex in r as desired.

Proposition 3.6 Let Q̂ = argmaxQĤ(Q, π) and Q̂C = argmaxQĤC(Q, π), we have∑
s∼D

a∼µ(a|s)

Q̂C(s, a) ≤
∑
s∼D

a∼µ(a|s)

Q̂(s, a)

Proof. We write

ĤC(Q̂C , π) = −β
∑
s∼D

a∼µ(a|s)

Q̂C(s, a) + Ĥ(Q̂C , π) (16)

(a)

≥ −β
∑
s∼D

a∼µ(a|s)

Q̂(s, a) + Ĥ(Q̂, π)

(b)

≥ −β
∑
s∼D

a∼µ(a|s)

Q̂(s, a) + Ĥ(Q̂C , π) (17)

where (a) is because Q̂C = argmaxQĤC(Q, π) and (b) is because Ĥ(Q̂, π) ≥ Ĥ(Q̂C , π). Combine
(16) and (17) we get

β
∑
s∼D

a∼µ(a|s)

Q̂C(s, a) ≤ β
∑
s∼D

a∼µ(a|s)

Q̂(s, a)

as desired.

B Additional Details

B.1 Practical Training Objective

We discuss a practical implementation of the training objective in (4) using samples from both
the expert and sub-optimal demonstration sets. We first note that the term Eρπ [T π[Q](s, a))] −
Eρπ [log π(s, a)] can be written as [13]:

Eρπ [T π[Q](s, a))]−Eρπ [log π(s, a)] = E(s,s′)∼ρ∗ [V
π(s)− γEs′V π(s′)]

for any valid occupancy measure ρ∗. So, for any policy occupancy measure, we can write this term
though the union of expert policies ρU as

Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)] =
∑
i∈[N]

wiEρi [V π(s)− γEs′V π(s′)] (18)

16

As a result, by replacing V π(s) with V Q(s), we can write Γ̂(Q) in a compact form as

Γ̂(Q) =
∑
i∈[N]

wiEρi [Q(s, a)− γEs′V Q(s′)]

−
∑
i∈[N]

wiEρi [V Q(s)− γEs′V Q(s′)]− α
∑
i∈[N]

wiEρi [∆Q
r (s, a)] (19)

where ∆Q
r (s, a) = (Q(s, a)− r(s, a))2 + (Es′V Q(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V Q(s′).

In an empirical offline implementation, to maximize Γ̂(Q), samples (s, a, s′) from demonstra-
tions can be used to approximate the expectations over ρi:

∑
(s,a,s′)∈Di [Q(s, a) − γV Q(s′)],∑

(s,a,s′)∈Di [V
Q(s)− γV Q(s′)], and

∑
(s,a)∈Di [∆

Q
r (s, a)].

We note that in continuous-action controls, the computation of V Q(s) involves a sum over infinitely
many actions, which is impractical. In this case, we can update both Q and π in a soft actor-critic
(SAC) manner. That is, for each π, we update Q towards maxQ{Ĥ(Q, π)} and for each Q, we update
π to bring it towards πQ by solving maxπ{V π(s)}, for all s. As shown above, Ĥ(Q, π) in concave
in Q and V π(s) is convex in π, so we can expect this SAC will exhibit good behavior and stability.

B.2 Algorithm Overview

The Figure 2 provide the overview of our algorithm.

Figure 2: Overview of SPRINQL.

B.3 Environments

This section provide a detailed descrition of the enviroments used in our experiments.

B.3.1 Mujoco

MuJoCo gym environments [32] like HalfCheetah, Ant, Walker2d, Hopper, and Humanoid are
integral to the field of reinforcement learning (RL), particularly in the domain of continuous control
and robotics:

• HalfCheetah: This environment simulates a two-dimensional cheetah-like robot. The
objective is to make the cheetah run as fast as possible, which involves learning complex,
coordinated movements across its body.

• Ant: This environment features a four-legged robot resembling an ant. The challenge is to
control the robot to move effectively, balancing stability and speed.

• Walker2d: This environment simulates a two-dimensional bipedal robot. The goal is to
make the robot walk forward as fast as possible without falling over.

17

• Hopper: The Hopper environment involves a single-legged robot. The primary challenge
is to balance and hop forward continuously, which requires maintaining stability while in
motion.

• Humanoid: The Humanoid environment is among the most complex, featuring a bipedal
robot with a human-like structure. The task involves mastering various movements, from
walking to more complex maneuvers, while maintaining balance.

An expert is trying to maximize the reward function by moving with a trajectory length limit of 1000.
All five environments are shown in Figure 3.

Cheetah Ant Walker Hopper Humanoid

Figure 3: Five different Mujoco environments.

B.3.2 Panda-gym

The Panda-gym environments [12], designed for the Franka Emika Panda robot in reinforcement
learning, include PandaReach, PandaPush, PandaPickandPlace, and PandaSlide. Here’s a short
description of each:

• PandaReach: The task is to move the robot’s gripper to a randomly generated target position
within a specific volume. It focuses on precise control of the gripper’s movement.

• PandaPush: In this environment, a cube placed on a table must be pushed to a target
position. The gripper remains closed, emphasizing the robot’s ability to manipulate objects
through pushing actions.

• PandaPickandPlace: This more complex task involves picking up a cube and placing it at
a target position above the table. It requires coordinated control of the robot’s gripper for
both lifting and accurate placement.

• PandaSlide: Here, the robot must slide a flat object (like a hockey puck) to a target position
on a table. The gripper is fixed in a closed position, and the task demands imparting the
right amount of force to slide the object to the target.

In these environments, the reward function is -1 for every time step it has not finished the task.
Moreover, the maximum horizon is extremely short, with a maximum of 50, while an expert can
complete the task after several steps. All four different environments are shown in Figure 4.

Reach Push PnP Slide

Figure 4: Five different Panda-gym environments.

B.4 Qualities of the Generated Expert and Non-Expert Datasets

In this paper, we provide a new setting utilizing ranked sub-optimal datasets to perform imitation
learning in the offline setting (illustration in Figure 5).

18

Increasing optimality

Ranked sub-optimal datasets

1 (expert)23N

Figure 5: Training datasets illustration.

We create sub-optimal datasets by adding noise to actions of the expert policy and let them interact
with the environments to collect the sub-optimal trajectories. Each task has its own difficulty and
sensitivity to the noise of the actions. The averaged returns of the generated datasets, computed as
percentages w.r.t. the maximum returns, are reported in Figure 6.

Cheetah (11415)

3 2 1
0

25

50

75

100

Ant (5187)

3 2 1
0

25

50

75

100

Walker (4477)

3 2 1
0

25

50

75

100

Hopper (3748)

3 2 1
0

25

50

75

100

Humanoid (8038)

3 2 1
0

25

50

75

100

Reach (-1.83)

3 2 1
0

25

50

75

100

Push (-3.61)

3 2 1
0

25

50

75

100

PnP (-6.61)

3 2 1

25

50

75

100

Slide (-8.99)

3 2 1
0

25

50

75

100

Figure 6: Whisker plots illustrate the average returns of both expert and non-expert datasets nine
distinct environments in Mujoco and Panda-gym. The numerical values following the task names
represent the actual mean return of the expert policy.

B.5 Hyper Parameters and Experimental Implementations

• In our experiments, for every algorithm, we run five different seeds corresponding to five
different datasets sampled from our databases in Appendix B.4.

• We use double Q critic network for our implementation to increase the stability in the offline
training scheme.

• For IQ-learn [13],SQIL [29], we conduct experiment from its official implement with
double Q critic network.

• For DemoDICE [21] we conduct experiment from its official implementation.
• For DWBC [37] we conduct experiment from its official implementation.
• Inspired by double Q-learning, to avoid overfitting in the offline setting, some experiments

apply a training trick using KL-divergence between the target actor and the training actor to
prevent rapid policy changes.

• For SAC-based algorithms, we use a fixed exploration parameter which is commonly used
in previous work.

• We conducted all experiments on a total of 8 NVIDIA RTX A5000 GPUs and 64 core CPUs.
We use 1 GPUs and 8 core CPUs per task with approximately one day per 5 seeds. The
detailed hyper-parameters are reported in Table 2.

19

https://github.com/Div99/IQ-Learn
https://github.com/KAIST-AILab/imitation-dice
https://github.com/ryanxhr/DWBC

HYPER PARAMETER BC-BASED SPRINQL

ACTOR NETWORK [256,256] [256,256]
CRITIC NETWORK [256,256] [256,256]
TRAINING STEP 1,000,000 1,000,000
GAMMA 0.99 0.99
LR ACTOR 0.0001 0.00003
LR CRITIC 0.0003 0.0003
LR REWARD REFERENCE 0.0003 0.0003
BATCH SIZE 256 256
SOFT UPDATE CRITIC FACTOR - 0.005
SOFT UPDATE ACTOR FACTOR - 0.00003
EXPLORATION TEMPERATURE - 0.01
REWARD REGULARIZE TEMPERATURE (α) - 1.0
CQL TEMPERATURE (β) - 1.0

Table 2: Hyper parameters.

C Supplementary Experiments

In this section, we present additional experiments that complement those reported in the main paper,
along with ablation studies to address the experimental questions stated therein.

C.1 Full Experiment Results for Mujoco and Panda-gym

We report the full results for the 5 different Mujoco environments and 4 different Panda-gym
environments, with 3 datasets (i.e., N = 3), supplementing the results reported in Table 1 in the main
paper. The detailed results for Mujoco in Table 3 and Panda-gym in Table 4

Cheetah Ant Walker Hopper Humanoid Avg

BC-E -3.2±0.9 6.4±19.1 0.3±0.4 8.3±4.1 1.3±0.2 2.6
BC-O 14.2±2.9 35.2±20.1 66.1±10.8 16.7±4.0 10.6±6.3 29.0
BC-both 13.2±3.6 47.0±5.9 63.9±7.3 22.6±12.8 9.0±3.5 31.1
W-BC 12.9±2.8 47.3±6.4 58.6±9.1 20.9±6.6 19.6±19.0 31.9
TRAIL -4.1±0.3 -4.7±1.9 0.2±0.3 1.1±0.5 2.6±0.6 -1.0
IQ-E -3.4±0.6 -3.4±1.3 0.1±0.7 0.3±0.2 2.4±0.6 -0.8
IQ-both -6.1±1.4 -58.2±0.0 -0.2±0.1 0.0±0.0 0.8±0.0 -12.7
SQIL-E -5.0±0.7 -33.8±7.4 0.2±0.2 0.2±0.0 0.9±0.1 -7.5
SQIL-both -5.6±0.5 -58.0±0.4 -0.2±0.0 0.0±0.0 0.8±0.0 -12.6
DemoDICE 0.4±2.0 31.7±8.9 7.2±3.1 18.7±7.5 2.6±0.8 12.1
DWBC -0.2±2.5 10.4±5.0 25.1±16.3 66.0±20.9 3.7±0.3 21.0

SPRINQL (ours) 73.6±4.3 77.0±5.6 87.9±14.2 70.0±23.8 82.9±11.2 78.3

Table 3: Comparison results for Mujoco tasks.

20

Reach Push PnP Slide Avg

BC-E 13.9±5.9 8.2±3.8 3.7±2.7 0.0±0.0 6.5
BC-O 16.2±5.5 8.8±4.5 3.9±2.7 0.1±0.3 7.3
BC-both 16.3±5.0 9.0±4.3 4.4±3.0 0.1±0.4 7.3
W-BC 15.7±5.1 8.8±4.3 3.7±2.8 0.0±0.0 7.0
TRAIL 18.3±5.1 11.7±4.0 7.8±3.7 1.7±1.8 9.9
IQ-E 97.7±2.4 26.3±10.9 18.1±12.5 0.1±0.4 35.6
IQ-both 5.7±3.4 8.3±3.9 3.8±3.3 0.0±0.2 4.5
SQIL-E 22.1±15.1 9.6±3.3 3.2±2.9 0.1±0.3 8.8
SQIL-both 8.0±4.2 8.2±3.8 3.3±2.3 0.1±0.3 4.9
DemoDICE 14.0±5.3 8.1±3.7 4.3±2.4 0.1±0.5 6.6
DWBC 93.4±4.3 36.9±7.4 25.0±6.3 11.6±4.4 41.7

SPRINQL (ours) 99.8±0.9 72.0±5.3 63.2±6.4 37.7±6.6 68.2

Table 4: Comparison results for Panda-gym tasks.

C.2 Comparison Results for N = 2, i.e., One Expert and One Sub-optimal Datasets - Q1

We provide additional comparison results for N = 2, complementing to the answer of (Q1), i.e.,
how does SPRINQL perform compared to other baselines? In this experiment, we want to test the
ability of our algorithm in the same scenario of DemoDICE, DWBC which include expert dataset
and only one supplementary dataset. Number of expert transitions in Mujoco domains is 1000 and
100 for Panda-gym. Meanwhile, for the supplementary dataset, it is 25000 transitions for Mujoco and
5000 for Panda-gym. In general, although we experience a downgrade in performance due to lack of
ranking (only one supplementary dataset), leading to misunderstanding the true reward function, our
method is still able to leverage the sub-optimal dataset for understanding the expert demonstrations
and provide the highest average score. Reported results are shown in Table 5 6 and Figure 7.

Method Cheetah Ant Walker Hopper Humanoid Avg

BC 3.4±1.3 39.2±6.6 45.5±14.4 28.4±9.0 24.4±25.2 28.2
W-BC 3.1±1.0 39.6±7.3 46.1±12.3 29.5±9.0 28.6±27.8 29.4
DemoDICE -1.6±0.6 31.6±7.5 6.5±1.7 31.9±12.3 2.7±0.6 14.2
DWBC -1.2±1.3 9.5±3.4 13.1±4.7 87.0±22.2 4.2±0.4 22.5

SPRINQL (ours) 49.2±18.5 56.9±8.2 77.8±17.6 39.1±21.0 32.4±6.4 51.1

Table 5: Comparison results for Mujoco tasks in two expert datasets.

Method Reach Push PnP Slide Avg

BC 17.1±4.8 8.1±3.8 3.6±2.4 0.3±0.6 7.3
W-BC 18.5±5.2 9.8±4.5 3.4±3.1 0.1±0.4 8.0
DemoDICE 14.8±5.7 8.8±4.4 3.8±2.9 0.2±0.6 6.9
DWBC 98.2±2.4 38.4±7.4 27.7±8.1 14.5±4.3 44.7

SPRINQL (ours) 93.9±3.3 61.3±7.2 64.2±6.7 26.6±5.5 61.5

Table 6: Comparison results for Panda-gym tasks in two expert datasets.

21

Cheetah

0.0 0.5 1.0
1e6

0

50

100

Ant

0.0 0.5 1.0
1e6

0

50

100

Walker

0.0 0.5 1.0
1e6

0

50

100

Hopper

0.0 0.5 1.0
1e6

0

50

100

Humanoid

0.0 0.5 1.0
1e6

0

50

100

Reach

0.0 0.5 1.0
1e6

0

50

100

Push

0.0 0.5 1.0
1e6

50

100

PnP

0.0 0.5 1.0
1e6

0

50

100

Slide

0.0 0.5 1.0
1e6

0

50

100

DWBC Weighted-BC BC DemoDICE SPRINQL Expert

Figure 7: Learning curves of two dataset experiment.

C.3 Learning Curves of noReg-SPRINQL and noDM-SPRINQL

This section reports additional results for the comparison between SPRINQL and the two variants
noReg-SPRINQL and noDM-SPRINQL (supplementing the answer of Q2 in the main paper). The
comparison results for Panda-gym environments are reported in Figure 8 and the learning curves are
plotted in Figure 9 and Figure 10.

Reach

2 3
number of levels

0

50

100
Push

2 3
number of levels

0

50

100
PnP

2 3
number of levels

0

50

100
Slide

2 3
number of levels

0

50

100

noReg-SPRINQL noDM-SPRINQL SPRINQL expert

Figure 8: Ablation study show the performance of three variants of SPRINQL across four Panda-gym
environments.

Cheetah

0.0 0.5 1.0
1e6

0

50

100

Ant

0.0 0.5 1.0
1e6

25

50

75

100

Walker

0.0 0.5 1.0
1e6

0

50

100

Hopper

0.0 0.5 1.0
1e6

0

50

100

Humanoid

0.0 0.5 1.0
1e6

0

50

100

Reach

0.0 0.5 1.0
1e6

0

50

100

Push

0.0 0.5 1.0
1e6

50

100

PnP

0.0 0.5 1.0
1e6

0

50

100

Slide

0.0 0.5 1.0
1e6

0

50

100

noReg-SPRINQL noDM-SPRINQL SPRINQL expert

Figure 9: Two term ablation study for two level dataset scenario.

22

Cheetah

0.0 0.5 1.0
1e6

0

50

100

Ant

0.0 0.5 1.0
1e6

25

50

75

100

Walker

0.0 0.5 1.0
1e6

0

50

100

Hopper

0.0 0.5 1.0
1e6

0

50

100

Humanoid

0.0 0.5 1.0
1e6

0

50

100

Reach

0.0 0.5 1.0
1e6

0

50

100

Push

0.0 0.5 1.0
1e6

0

50

100

PnP

0.0 0.5 1.0
1e6

0

50

100

Slide

0.0 0.5 1.0
1e6

0

50

100

noReg-SPRINQL noDM-SPRINQL SPRINQL expert

Figure 10: Two term ablation study for three level dataset scenario.

C.4 Augmented Expert Demonstrations

We provide experiments to address (Q3) – What happens if we augment the expert data while
maintaining the sub-optimal datasets? To this end, we use two Mujoco and two Panda-gym tasks,
keeping the same sup-optimal datasets and add more expert demonstrations to the training sets. The
comparison results are reported in Figure 11. For the Mujoco tasks, which are more difficult, adding
more expert trajectories significantly enhances the performance of all the algorithms. However, for
the two Panda-gym tasks, the influence of adding more expert data appears to be less significant
in Push and completely absent in PnP. This would be because expert trajectories in these tasks are
typically short, consisting of only 2-7 transitions. Hence, a larger quantity of additional expert data
may be required to enhance performance.

Cheetah

0.0 0.5 1.0
1e6

0

50

100

Ant

0.0 0.5 1.0
1e6

0

50

100

Push

0.0 0.5 1.0
1e6

0

50

100

PnP

0.0 0.5 1.0
1e6

0

50

100

DWBC
DWBC (+E)

DemoDICE (+E)
BC (+E)

SPRINQL
SPRINQL (+E)

SPRINQL (noE)
Expert

Figure 11: Comparison results with additional expert demonstrations; (+E) signifies that the expert
dataset is increased from 1k to 5k for Mujoco and from 100 to 500 for Panda-gym, while (noE)
indicates no expert data.

C.5 Augmented Sup-optimal Demonstrations

Cheetah

10k-5k 25k-10k 25k-25k
0

50

100

Ant

10k-5k 25k-10k 25k-25k
0

50

100

Push

5k-1k 10k-5k 10k-10k
0

50

100

PnP

5k-1k 10k-5k 10k-10k
0

50

100

DWBC BC DemoDICE SPRINQL Expert

Figure 12: Performance comparisons with varied sub-optimal data sizes. The x-axis shows the size
of Level 2 and 3 sup-optimal datasets, and y-axis shows the scores.

In this experiment, we want to answer the question (Q4) – What happens if we augment (or reduce)
the sub-optimal data while maintaining the expert dataset?. We present numerical results to assess

23

the impact of sub-optimal data on the performance of our SPRINQL and other baselines. To this end,
we keep the same expert dataset and adjust the non-expert data used in Table 1. The performance is
reported in Fig.12. It is evident that reducing the amount of data in sub-optimal datasets can result in
a significant degradation in the performance of our SPRINQL and the other baselines. Conversely,
adding more sub-optimal data can enhance overall stability and lead to improved performance.

In the Figure 13 we show the learning curves with varied sizes for sub-optimal datasets. It can be
seem that the overall performance tends to improve with more sup-optimal datasets. In particular, for
the Ant task, our SPRINQL even fails to maintain stability when the sizes of sup-optimal datasets are
low (10k-5k-1k). Moreover, while BC seems to show improvement with more sub-optimal data, the
performance of DWBC and DemoDICE remains unchanged. This may be because these approaches
rely on the assumption that expert demonstrations can be extracted from the sub-optimal data, which
is not the case in our context.

C
he

et
ah

10k-5k-1k

0.0 0.5 1.0
1e6

0

50

100

25k-10k-1k

0.0 0.5 1.0
1e6

0

50

100

25k-25k-1k

0.0 0.5 1.0
1e6

0

50

100

A
nt

10k-5k-1k

0.0 0.5 1.0
1e6

0

100

25k-10k-1k

0.0 0.5 1.0
1e6

0

50

100

25k-25k-1k

0.0 0.5 1.0
1e6

0

50

100

Pu
sh

5k-1k-100

0.0 0.5 1.0
1e6

50

100

10k-5k-100

0.0 0.5 1.0
1e6

50

100

10k-10k-100

0.0 0.5 1.0
1e6

50

100

Pn
P

5k-1k-100

0.0 0.5 1.0
1e6

0

50

100

10k-5k-100

0.0 0.5 1.0
1e6

0

50

100

10k-10k-100

0.0 0.5 1.0
1e6

0

50

100

DWBC BC DemoDICE SPRINQL Expert

Figure 13: Evaluation curves with different sub-optimal-dataset size.

24

C.6 Impact of the Conservative Term

In this experiment, we aim to answer (Q5) – How does the conservative term help in our approach?
The Equation 8 introduce the conservative Q learning (CQL) term into our work. Here we also test
three variants of our method from Section 4.3 and show the impact of CQL to the final performance.
The experimental results are shown in Figure 14.

Cheetah

0.0 0.5 1.0
1e6

0

50

100

Ant

0.0 0.5 1.0
1e6

0

100

Push

0.0 0.5 1.0
1e6

0

50

100

PnP

0.0 0.5 1.0
1e6

0

50

100

noReg-SPRINQL (no CQL)
noReg-SPRINQL

noDM-SPRINQL (no CQL)
noDM-SPRINQL

SPRINQL (no CQL)
SPRINQL

expert

Figure 14: Performance of 3 variant with and without the CQL term in four different environments
accross two domains.

C.7 Performance with Varying Number of Expertise Levels

5 4 3 2 1
0

25

50

75

100

Figure 15: Average returns of the 5 HalfCheetah datasets (one expert and four sub-optimals).

1 sub-optimal dataset

0.0 0.5 1.0
1e6

0

50

100

2 sub-optimal datasets

0.0 0.5 1.0
1e6

0

50

100

3 sub-optimal datasets

0.0 0.5 1.0
1e6

0

50

100

4 sub-optimal datasets

0.0 0.5 1.0
1e6

0

50

100

DemoDICE BC DWBC SPRINQL Expert

Figure 16: Experiment results for different numbers of sub-optimal datasets. The learning curves are
calculated by mean with shaded by the standard error of 5 data seeds.

We provide an experiment to answer (Q6) - How does increasing N (the number of expertise levels)
affect the performance of SPRINQL? We assess our algorithm with different numbers of expertise
levels to investigate how adding or removing sub-optimal expertise levels influences performance.
Specifically, we keep the same expert dataset comprising 1 expert trajectory and conduct tests with 1
to 4 sub-optimal datasets from the Cheetah task. Details of the average returns of the five datasets are
reported in Fig. 15. In this context, SPRINQL outperforms other algorithms in utilizing non-expert

25

demonstrations. Furthermore, BC successfully learns and achieves performance comparable to the
performance of SPRINQL with 2 dataset, while DemoDICE and DWBC struggle to learn. The
detailed results are plotted in Figure 16. In Section (C.2) below, We particularly delve into the
situation of having two datasets (one expert and one sub-optimal), which is a typical setting in prior
work.

C.8 Ablation Study for the Preference-based Weight Learning

We provide this experiment to answer (Q7) – Does the preference-based weight learning approach
provide good values for the weights wi? To this end, we compare the performance of SPRINQL based
on the weights determined by the preference-based methods described in the main paper (denoted as
auto W), and the following weighting scenarios:

• Uniform W: We chose the weights wi uniformly over [0, 1] as w = {0.55, 0.35, 0.15} with
a ratio of approximately 10 : 7 : 4.

• Reduced W: Starting from Uniform W, we reduced the weights of the non-expert data and
tested the weights w = {0.65, 0.2, 0.15} with a ratio of approximately 10 : 3 : 2.

• Increased W: Starting from Uniform W, we increased the weights of the non-expert data
and chose w = {0.4, 0.32, 0.28} with a ratio of approximately 10 : 8 : 7.

These weight vectors w are normalized to follow w1 > w2 > . . . > wN and
∑
i∈[N] wi = 1.

The comparison results are shown in Figure 17.

Cheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0 Uniform W
Reduced W
Increased W

auto W
Expert

Ant

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.2

0.4

0.6

0.8

1.0 Uniform W
Reduced W
Increased W

auto W
Expert

Figure 17: Experiment results for SPRINQL with different manual selection of weight W .

C.9 D4RL mujoco dataset

In this section, we present additional experiments using the official D4RL dataset. Unfortunately,
since our algorithm requires meaningful demonstrations, we exclude the Random dataset and are only
able to test with N = 2 (Medium and Expert datasets). The detailed results are shown in Figure 18.

Cheetah

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

−20

0

20

40

60

80

100

S
co
re

DemoDICE
DWBC
BC-all

SPRINQL
Expert

Ant

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

−20

0

20

40

60

80

100

S
co
re

DemoDICE
DWBC
BC-all

SPRINQL
Expert

Walker

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

−20

0

20

40

60

80

100

S
co
re

DemoDICE
DWBC
BC-all

SPRINQL
Expert

Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

−20

0

20

40

60

80

100

S
co
re

DemoDICE
DWBC
BC-all

SPRINQL
Expert

Figure 18: Performance in D4RL dataset with Medium (25,000 transitions) and Expert(1,000
transitions. The results are reported from 5 seeds per method.

26

C.10 Reward Recovering

In this experiment, we want to answer (Q8) - How does SPRINQL perform in recovering the ground-
truth reward function? Compared to BC-based algorithms, one notable advantage of Q-learning based
algorithms is their ability to recover the reward function. Here, we present experiments demonstrating
reward function recovery across five MuJoCo tasks, comparing recovered rewards to the actual reward
function. To achieve this, we introduce increasing levels of random noise to the actions of a trained
agent and observe its interactions with the environment. We collect the state, action, and next state
for each trajectory, then predict the recovered reward and compare it to the true reward from the
environment. For the sake of comparison, we include noReg-SPRINQL, which can be considered an
an adaption of IQ-learn [13] to our setting, and noDM-SPRINQL, which is in fact an adaption of
T-REX to our offline setting.

Comparison results are presented in Figure 19. We observe a linear relationship between the true and
predicted rewards for SPRINQL across all testing tasks, whereas the other approaches fail to return
correct relationships for some tasks.

27

C
he

et
ah

noReg-SPRINQL

5000 10000
True Return

−150000

−100000

−50000

0

Pr
ed

ict
ed

 R
et

ur
n

noDM-SPRINQL

2500 5000 7500 10000
True Return

200

300

400

Pr
ed

ict
ed

 R
et

ur
n

SPRINQL

2500 5000 7500 10000
True Return

300

400

500

600

700

Pr
ed

ict
ed

 R
et

ur
n

A
nt

noReg-SPRINQL

0 2000 4000
True Return

0

100

200

300

400

Pr
ed

ict
ed

 R
et

ur
n

noDM-SPRINQL

0 2000 4000
True Return

0

100

200

300

400

500
Pr

ed
ict

ed
 R

et
ur

n

SPRINQL

0 2000 4000
True Return

0
100
200
300
400
500

Pr
ed

ict
ed

 R
et

ur
n

W
al

ke
r

noReg-SPRINQL

0 1000 2000 3000 4000
True Return

0

100

200

300

400

Pr
ed

ict
ed

 R
et

ur
n

noDM-SPRINQL

0 1000 2000 3000 4000
True Return

0

200

400

Pr
ed

ict
ed

 R
et

ur
n

SPRINQL

0 1000 2000 3000 4000
True Return

0

200

400

600

Pr
ed

ict
ed

 R
et

ur
n

H
op

pe
r

noReg-SPRINQL

0 1000 2000 3000
True Return

50

100

150

200

250

Pr
ed

ict
ed

 R
et

ur
n

noDM-SPRINQL

0 1000 2000 3000
True Return

50

100

150

200

250

Pr
ed

ict
ed

 R
et

ur
n

SPRINQL

0 1000 2000 3000
True Return

0

200

400

600

Pr
ed

ict
ed

 R
et

ur
n

H
um

an
oi

d

noReg-SPRINQL

0 2500 5000 7500
True Return

−300000

−200000

−100000

Pr
ed

ict
ed

 R
et

ur
n

noDM-SPRINQL

0 2500 5000 7500
True Return

−100000

−80000

−60000

−40000

−20000

Pr
ed

ict
ed

 R
et

ur
n

SPRINQL

0 2000 4000 6000 8000
True Return

0

200

400

600

Pr
ed

ict
ed

 R
et

ur
n

Figure 19: Recovered return and the true return of five Mujoco environments.

28

C.11 Reference Reward Distribution

From the experiment reported in Table 1, we plot the distributions of the reward reference values
in Figure 20, where the x-axis shows the level indexes and the y-axis shows reward values. The
rewards seem to follow desired distributions, with larger rewards assigned to higher expertise levels.
Moreover, rewards learned for expert demonstrations are consistently and significantly higher and
exhibit smaller variances compared to those learned for sub-optimal transitions.

Cheetah

3 2 10.00

0.25

0.50

0.75

1.00

Ant

3 2 10.00

0.25

0.50

0.75

1.00

Walker

3 2 10.00

0.25

0.50

0.75

1.00

Hopper

3 2 10.00

0.25

0.50

0.75

1.00

Humanoid

3 2 10.00

0.25

0.50

0.75

1.00

Reach

3 2 10.0
0.2
0.4
0.6
0.8
1.0

Push

3 2 10.0
0.2
0.4
0.6
0.8
1.0

PnP

3 2 10.0
0.2
0.4
0.6
0.8
1.0

Slide

3 2 10.0
0.2
0.4
0.6
0.8
1.0

Figure 20: Whisker plots illustrate the reward reference distribution of three datasets of each environ-
ment for one seed.

C.12 Different alpha ablation study

As our objective is a combination of two terms with a balancing parameter α, we conduct additional
experiments to evaluate the performance of our method across a range of α values. The detailed
results are presented in Figure 21. Overall, the results indicate that α can be selected within the range
of 0.1 to 10 to achieve good performance.

Cheetah (N=3)

0 0.01 0.1 1 10 100 +oo
Alpha

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re

SPRINQL Expert

Ant (N=3)

0 0.01 0.1 1 10 100 +oo
Alpha

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re

SPRINQL Expert

Cheetah (N=2)

0 0.01 0.1 1 10 100 +oo
Alpha

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re

SPRINQL Expert

Ant (N=2)

0 0.01 0.1 1 10 100 +oo
Alpha

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re

SPRINQL Expert

Figure 21: Performance of SPRINQL in different α. The results are reported from 5 seeds per α
value.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract includes our main claims reflecting our main contributions and
finding.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a discussion on the limitations of our work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

30

Justification: All the proofs of the theorems and propositions stated in the main paper are
provided in the appendix with clear references.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on the environments and hyper-parameter settings in the
appendix. We also uploaded our source code for re-productivity purposes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

31

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have describe how to generate our data as well as provide it along with
our submitted source code with sufficient instructions for their use.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have detailed these information in the main paper and the appendix of our
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the mean scores and standard deviations for the result tables.
We have also shown training curves constructed from mean scores and shaded by standard
error. All the experiments are reported with multiple training seeds as well as different
datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided these information in the “Hyper parameter and Experimental
Implementations” section in our appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper provides a general offline imitation learning with multiple expert
levels and only testing on the simulated environments. As such, we do not foresee any direct
societal impact.

Guidelines:

33

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our training data are generated from open source simulated environments
which have no risk for misuse.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided clear citations to the source code and data we used in the
paper.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

34

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our source code is submitted alongside the paper, accompanied by sufficient
instructions. We will share the code publicly for re-producibility or benchmarking purposes.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We have no crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

35

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Related Work

	Background
	SPRINQL
	Distribution Matching with Expert and Suboptimal Demonstrations
	Regularization with Reference Reward
	Concave Lower-bound on Inverse Soft-Q with Reward Regularizer
	SPRINQL Algorithm
	Estimating the Reference Reward
	Preference-based Weight Learning for wi
	Conservative soft-Q learning

	Experiments
	Experiment Setup
	Main Comparison Results
	Ablation Study - No Distribution Matching and No Reward Regularizer
	Other Experiments

	Conclusion and Limitations
	Missing Proofs
	Additional Details
	Practical Training Objective
	Algorithm Overview
	Environments
	Mujoco
	Panda-gym

	Qualities of the Generated Expert and Non-Expert Datasets
	Hyper Parameters and Experimental Implementations

	Supplementary Experiments
	Full Experiment Results for Mujoco and Panda-gym
	Comparison Results for N=2, i.e., One Expert and One Sub-optimal Datasets - Q1
	Learning Curves of noReg-SPRINQL and noDM-SPRINQL
	Augmented Expert Demonstrations
	Augmented Sup-optimal Demonstrations
	Impact of the Conservative Term
	Performance with Varying Number of Expertise Levels
	Ablation Study for the Preference-based Weight Learning
	D4RL mujoco dataset
	Reward Recovering
	Reference Reward Distribution
	Different alpha ablation study

