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Abstract

We focus on offline imitation learning (IL), which aims to mimic an expert’s behav-
ior using demonstrations without any interaction with the environment. One of the
main challenges in offline IL is the limited support of expert demonstrations, which
typically cover only a small fraction of the state-action space. While it may not be
feasible to obtain numerous expert demonstrations, it is often possible to gather
a larger set of sub-optimal demonstrations. For example, in treatment optimiza-
tion problems, there are varying levels of doctor treatments available for different
chronic conditions. These range from treatment specialists and experienced general
practitioners to less experienced general practitioners. Similarly, when robots are
trained to imitate humans in routine tasks, they might learn from individuals with
different levels of expertise and efficiency.
In this paper, we propose an offline IL approach that leverages the larger set
of sub-optimal demonstrations while effectively mimicking expert trajectories.
Existing offline IL methods based on behavior cloning or distribution matching
often face issues such as overfitting to the limited set of expert demonstrations
or inadvertently imitating sub-optimal trajectories from the larger dataset. Our
approach, which is based on inverse soft-Q learning, learns from both expert
and sub-optimal demonstrations. It assigns higher importance (through learned
weights) to aligning with expert demonstrations and lower importance to aligning
with sub-optimal ones. A key contribution of our approach, called SPRINQL, is
transforming the offline IL problem into a convex optimization over the space of Q
functions. Through comprehensive experimental evaluations, we demonstrate that
the SPRINQL algorithm achieves state-of-the-art (SOTA) performance on offline
IL benchmarks. Code is available at https://github.com/hmhuy0/SPRINQL.

1 Introduction

Reinforcement learning (RL) has established itself as a strong and reliable framework for sequential
decision-making with applications in diverse domains: robotics [19, 18], healthcare [34, 28, 27], and
environment generation [9, 24]. Unfortunately, RL requires an underlying simulator that can provide
rewards for different experiences, which is usually not available.

Imitation Learning (IL) [16, 29, 13, 17] handles the lack of reward function by utilizing expert
demonstrations to guide the learning scheme to compute a good policy. However, IL approaches
still require the presence of a simulator that allows for online interactions. Initial works in Offline
IL [35, 23, 40, 2] tackle the absence of simulator by considering an offline dataset of expert
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demonstrations. These approaches extend upon Behavioral Cloning (BC), where we aim to maximize
the likelihood of the expert’s decisions from the provided dataset. The key advantage with BC is the
theoretical justification on converging to expert behaviors given sufficient trajectories. However, when
there are not enough expert trajectories, it often suffers from distributional shift issues [30]. Thus, a
key drawback of these initial IL approaches is the need for a large number of expert demonstration
datasets.

To deal with limited expert demonstrations, recent works utilize non-expert demonstration datasets
to reduce the reliance on only expert demonstrations. These additional non-expert demonstrations
are referred to as supplementary data. Directly applying BC to these larger supplementary datasets
will lead to sub-optimal policies, so most prior work in utilizing supplementary data attempts to
extract expert-like demonstrations from the supplementary dataset in order to expand the expert
demonstrations [31, 21, 20, 37, 39]. These works assume expert-like demonstrations are present
in the supplementary dataset and focus on identifying and utilizing those, while eliminating the
non-expert demonstrations. Eliminating non-expert trajectories can result in loss of key information
(e.g., transition dynamics) about the environment. Additionally, these works primarily rely on BC,
which is known to overlook the sequential nature of decision-making problems – a small error can
quickly accumulate when the learned policy deviates from the states experienced by the expert.

We develop our algorithm based on an inverse Q-learning framework that better captures the sequential
nature of the decision-making [13] and can operate under the more realistic assumption that the data
is collected from people/policies with lower expertise levels1 (not experts). To illustrate, consider
a scenario in robotic manipulation where the goal is to teach a robot to assemble parts. Expert
demonstrations might show precise and efficient methods to assemble parts, but are limited in number
due to the high cost and time associated with expert involvement. On the other hand, sub-optimal
demonstrations from novice users are easier to obtain and more abundant. Our SPRINQL approach
effectively integrates these sub-optimal demonstrations, giving appropriate weight to the expert
demonstrations to ensure the robot learns the optimal assembly method without overfitting to the
limited expert data or the inaccuracies in the sub-optimal data. We utilize these non-expert trajectories
to learn a Q function that contributes to our understanding of the environment and the ground truth
reward function.

Contributions: Overall, we make the following key contributions in this paper:
(i) We propose SPRINQL, a novel algorithm based on Q-learning for offline imitation learning with
expert and multiple levels of sub-optimal demonstrations.
(ii) We provide key theoretical properties of the SPRINQL objective function, which enable the
development of a scalable and efficient approach. In particular, we leverage distribution matching and
reward regularization to develop an objective function for SPRINQL that not only help address the
issue of limited expert samples but also utilizes non-expert data to enhance learning. Our objective
function is not only convex within the space of Q functions but also guarantees the return of a Q
function that lower-bounds its true value.
(iii) We provide an extensive empirical evaluation of our approach in comparison to existing best
algorithms for offline IL with sup-optimal demonstrations. Our algorithms provide state-of-the-art
(SOTA) performance on all the benchmark problems. Moreover, SPRINQL is able to recover a
reward function that shows a high positive correlation with the ground-truth rewards, highlighting a
unique advantage of our approach compared to other IL algorithms in this context.

1.1 Related Work

Imitation Learning. Imitation learning is recognized as a significant technique for learning from
demonstrations. It begins with BC, which aims to maximize the likelihood of expert demonstrations.
However, BC often under-performs in practice due to unforeseen scenarios [30]. To overcome this
limitation, Generative Adversarial Imitation Learning (GAIL) [16] and Adversarial Inverse Reinforce-
ment Learning (AIRL) [10] have been developed. These methods align the occupancy distributions
of the policy and the expert within the Generative Adversarial Network (GAN) framework [14].
Alternatively, Soft Q Imitation Learning (SQIL) [29] bypasses the complexities of adversarial training
by assigning a reward of +1 to expert demonstrations and 0 to the others, subsequently learning a
value function based on these rewards.While the aforementioned imitation learning algorithms show

1While there have been works [5, 6, 7] that have attempted to minimize the required demonstrations using
ranked datasets by preference-based RL, their algorithms are only applicable to online settings.
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promise, they require interaction with the environment to obtain the policy distribution, which is
often impractical.

Offline Imitation Learning. ValueDICE [22] introduces a novel approach for off-policy training,
suitable for offline training, using Stationary Distribution Corrections [25, 26]. However, ValueDICE
necessitates adversarial training between the policy network and the Q network, which can make the
training slow and unstable. Recently, algorithms like PWIL [8] and IQ-learn [13] have optimized
distribution distance, offering an alternative to adversarial training schemes. Since such approaches
rely on occupancy distribution matching, a large expert dataset is often required to achieve the desired
performance. Our approach, SPRINQL is able to bypass this requirement of a large set of expert
demonstrations through the use of non-expert demonstrations (which are typically more available) in
conjunction with a small set of expert demonstrations.

Imitation Learning with Imperfect Demonstrations. T-REX [5] and D-REX [6] have shown that
utilizing noise-ranked demonstrations as a reference-based approach can return a better policy without
requiring expert demonstrations in online settings. Moreover, there are also several works [36, 33]
that utilize the GAN framework [14] for sub-optimal datasets and have achieved several successes.
Meanwhile, in the offline imitation learning context, TRAIL [38] utilizes sup-optimal demonstrations
to learn the environment’s dynamics. It employs a feature encoder to map the high-dimensional
state-action space into a lower dimension, thereby allowing for a scalable way of learning of dynamics.
This approach may face challenges in complex environments where predicting dynamics accurately
is difficult, as shown in our experimental results. Other works assume that they can extract expert-like
state-action pairs from the sub-optimal demonstration set and use them for BC with importance
sampling [31, 37, 39, 21, 20]. However, expert-like state-actions might be difficult to accurately
identify, as true reward information is not available. In contrast, our approach is more general, as we
do not assume that the sub-optimal set contains expert-like demonstrations. We also allow for the
inclusion of demonstrations of various qualities. Moreover, while prior works only recover policies,
our approach enables the recovery of both expert policies and rewards, justifying the use of our
method for Inverse Reinforcement Learning (IRL)[1].

2 Background

Preliminaries. We consider a MDP defined by the following tuple M = ⟨S,A, r, P, γ, s0⟩, where
S denotes the set of states, s0 represents the initial state set, A is the set of actions, r : S ×A → R
defines the reward function for each state-action pair, and P : S ×A → S is the transition function,
i.e., P (s′|s, a) is the probability of reaching state s′ ∈ S when action a ∈ A is made at state s ∈ S,
and γ is the discount factor. In reinforcement learning (RL), the aim is to find a policy that maximizes
the expected long-term accumulated reward maxπ

{
E(s,a)∼ρπ [r(s, a)]

}
, where ρπ is the occupancy

measure of policy π: ρπ(s, a) = (1− γ)π(a|s)
∑∞
t=1 γ

tP (st = s|π).

MaxEnt IRL The objective in MaxEnt IRL is to recover a reward function r(s, a) from a set of
expert demonstrations, DE . Let ρE be the occupancy measure of the expert policy. The MaxEnt IRL
framework [41] proposes to recover the expert reward function by solving

max
r

min
π

{
EρE [r(s, a)]− (Eρπ [r(s, a)]− Eρπ [log π(s, a)])

}
(1)

Intuitively, the aim is to find a reward function that achieves the highest difference between the
expected value of the expert policy and the highest expected value among all other policies (computed
through the min loop).

IQ-Learn Given a reward function r and a policy π, the soft Bellman equation is defined as
Bπr [Q](s, a) = r(s, a) + γEs′ [V π(s′)], where V π(s) = Ea∼π(a|s)[Q(s, a) − log π(a|s)]. The
Bellman equation Bπr [Q] = Q is contractive and always yields a unique Q solution [13]. In IQ-learn,
they further define an inverse soft-Q Bellman operator T π[Q] = Q(s, a)− γEs′ [V π(s′)]. [13] show
that for any reward function r(a, s), there is a unique Q∗ function such that Bπr [Q∗] = Q∗, and for a
Q∗ function in the Q-space, there is a unique reward function r such that r = T π[Q∗]. This result
suggests that one can safely transform the objective function of the MaxEnt IRL from r-space to the
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Q-space as follows:

max
Q

min
π

Φ(π,Q) = Eρ[T π[Q](s, a))]− Eρπ [T π[Q](s, a)] + Eρπ [log π(s, a)] (2)

which has several advantages; [13] show that Φ(π,Q) is convex in π and linear in Q, implying that (2)
always yields a unique saddle point solution. In particular, (2) can be converted into a maximization
over the Q-space, making the training problem no longer adversarial.

3 SPRINQL

We now describe our inverse soft-Q learning approach, referred to as SPRINQL (Sub-oPtimal
demonstrations driven Reward regularized INverse soft Q Learning). We first describe the three key
components in the SPRINQL formulation:

(1) We formulate the objective function that enables matching the occupancy distribution of not just
expert demonstrations, but also sub-optimal demonstrations.

(2) To mitigate the effect of limited expert samples (and larger sets of sub-optimal samples) that
can bias the distribution matching of the first step to sub-optimal demonstrations, we introduce a
reward regularization term within the objective. This regularization term is to ensure reward function
allocates higher values to state-action pairs that appear in higher expertise demonstrations.

(3) We show that while this new objective does not have the same advantageous properties as the one
in inverse Q-learning [13], with some minor (yet significant) changes it is possible to restore all the
important properties.

3.1 Distribution Matching with Expert and Suboptimal Demonstrations

We consider a setting where there are demonstrations classified into several sets of different expertise
levels D1,D2, ....,DN , where D1 consists of expert demonstrations and all the other sets contains sub-
optimal ones. This setting is general than existing work in IL with sup-optimal demonstrations, which
typically assumes that there are only two quality levels: expert and sub-optimal. Let D =

⋃
i∈[N ] Di

be the union of all the demonstration sets and ρ1, ..., ρN be the occupancy measures of the respective
expert policies. The ordering of expected values across different levels of expert policies would then
be given by:

Eρ1 [r∗(s, a)] > Eρ2 [r∗(s, a)] > ... > EρN [r∗(s, a)],
where r∗(., .) are the ground-truth rewards. Typically, the number of demonstrations in first level,
D1 is significantly lower than those from other expert levels, i.e., |D1| ≪ |Di|, for i = 2, ..., N The
MaxEnt IRL objective from Equation 1 can thus be adapted as follows:

max
r

min
π

∑
i∈[N ]

wiEρi [r(s, a)]− Eρπ [r(s, a)] + Eρπ [log π(s, a)] (3)

where wi ≥ 0 is the weight associated with the expert level i ∈ [N ] and we have w1 > w2 > ... > wN
and

∑
i∈[N ] wi = 1. There are two key intuitions in the above optimization: (a) Expert level i

accumulates higher expected values than expert levels greater than i; and (b) Difference in values
accumulated by expert policies and the maximum of all other policies is maximized. The optimization
term can be rewritten as:

EρU [r(s, a)]− Eρπ [r(s, a)]− Eρπ [log π(s, a)],

where ρU =
∑
i∈[N ] wiρ

i. Here we note that the expected reward
∑
i∈[N ] wiEρi [r(s, a)] is em-

pirically approximated by samples from the demonstration sets D1,D2, ....,DN . The number of
demonstrations in the best demonstration set D1 (i.e. the set of expert demonstrations) is significantly
lower when compared to other demonstration sets. So, an empirical approximation of Eρ1 [r(s, a)]
using samples from D1 would be inaccurate.

3.2 Regularization with Reference Reward

We create a reference reward based on the provided expert and sub-optimal demonstrations and utilize
the reference function to compute a regularization term that is added to the objective of Equation 3.
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Concretely, we define a reference reward function r(s, a) such that:

r(s, a) > r(s′, a′),∀(s, a) ∈ D1 and (s′, a′) /∈ D1 and

r(s, a) > r(s′, a′),∀(s, a) ∈ D2 and ∀(s′, a′) /∈ D2 ∪ D1 and so on

The aim here is to assign higher rewards to demonstrations from higher expertise levels, and zero
rewards to those that do not belong to provided demonstrations. We will discuss how to concretely
estimate such reference reward values later.

We utilize this reference reward as part of the reward regularization term, which is added into the
MaxEntIRL objective in (3) as follows:

max
r

min
π

{
EρU [r(s, a)]− Eρπ [r(s, a)] + Eρπ [log π(s, a)]︸ ︷︷ ︸

Occupancy matching

−αEρU [(r(s, a)− r(s, a))2]︸ ︷︷ ︸
Reward regularizer

}
(4)

where α > 0 is a weight parameter for the reward regularizer term. With (4), the goal is to find
a policy with an occupancy distribution that matches with the occupancy distribution of different
expertise levels appropriately (characterized by the weights, wi). Simultaneously, it ensures that the
learning rewards are close to the pre-assigned rewards, aiming to guide the learning policy towards
replicating expert demonstrations, while also learning from sub-optimal demonstrations.

3.3 Concave Lower-bound on Inverse Soft-Q with Reward Regularizer

Even though (4) can be directly solved to recover rewards, prior research suggests that transforming
(4) into the Q-space will enhance efficiency. We delve into this transformation approach in this
section. As discussed in Section 2, there is a one-to-one mapping between any reward function r and
a function Q in the Q-space. Thus, the maximin problem in (4) can be equivalently transformed as:

max
Q

min
π

{
H(Q, π)

def
= EρU [T π[Q](s, a))]− Eρπ [T π[Q](s, a))] + Eρπ [log π(s, a)]

− αEρU [(T π[Q](s, a))− r(s, a))2]
}

(5)

where r(s, a) is replaced by T π[Q](s, a) and

T π[Q](s, a) = Q(s, a)− γEs′ [V π(s′)], V π(s) = Ea∼π(a|s)[Q(s, a)− log π(a|s)]

In the context of single-expert-level, [13] demonstrated that the objective function in the Q-space as
given in Equation 2 is concave in Q and convex in π, implying that the maximin problem always has
a unique saddle point solution. Unfortunately, this property does not hold in our case.

Proposition 3.1. H(Q, π) (as defined in Equation 5) is concave in Q but is not convex in π.

In general, we can see that the first and second term of (6) are convex in Q, but the reward regularizer
term, which can be written as

αEρU
[
(Q(s, a)− r(s, a)− Es′∼P (.|s,a)Ea′∼π(.|s′)(Q(s′, a′)− log π(s′, a′)))2

]
,

is not concave in π (details are shown in the Appendix). The property indicated in Proposition 3.1
implies that the maximin problem within the Q-space maxQminπ J(Q, π) may not have a unique
saddle point solution and would be more challenging to solve, compared to the original inverse
IQ-learn problem.

Another key property of Equation 2 is with regards to the inner minimization problem over π, which
yields a unique closed-form solution, enabling the transformation of the max-min problem into a
non-adversarial concave maximization problem within the Q-space. The closed-form solution was
given by πQ = argmaxπ V π(s) for all s ∈ S. Unfortunately, this result also does not hold with the
new objective function in (6), as formally stated below:

Proposition 3.2. H(Q, π) may not necessarily be minimized at π∗ such that π∗ = argmaxπ V π(s),
for all s ∈ S.
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To overcome the above challenges, our approach involves constructing a more tractable objective
function that is a lower bound on the objective of (6). Let us first define Γ(Q) = minπH(Q, π). We
then look at the regularization term, which causes all the aforementioned challenges, and write:

(T π[Q](s, a))−r(s, a))2 = (Q(s, a)− r(s, a)− Es′ [V
π(s′)])2

= (Q(s, a)− r(s, a))2 + (Es′ [V
π(s′)])2 + 2(r(s, a)−Q(s, a))Es′ [V

π(s′)]

We then take out the negative part of (r(s, a)−Q(s, a)) using ReLU, and consider a slightly new
objective function as follows:

Ĥ(Q, π)
def
=

∑
i∈[N ]

wiEρi [T π[Q](s, a))]− (Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)])

− αEρU
[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s′)

]
(6)

Let Γ̂(Q) = minπ Ĥ(Q, π)). The proposition below shows that Γ̂(Q) always lower-bounds Γ(Q).

Proposition 3.3. For any Q ≥ 0, we have Γ̂(Q) ≤ Γ(Q) and maxQ Γ̂(Q) ≤ maxQ Γ(Q). Moreover,
Γ(Q) = Γ̂(Q) if Q(s, a) ≤ r(s, a) for all (s, a).

We note that assuming Q ≥ 0 is not restrictive, as if the expert’s rewards r∗(s, a) are non-negative
(typically the case), then the true soft-Q function, defined as Q∗(s, a) = E[

∑
st,at

γt(r∗(s, a) −
log π(s, a))|(s0, a0) = (s, a)], should also be non-negative, for any π. As Γ̂(Q) provides a lower-
bound approximation of Γ(Q), maximizing Γ̂(Q) over the Q-space would drive Γ(Q) towards its
maximum value. It is important to note that, given that the inner problem involves minimization,
obtaining an upper-bound approximation function is easier. However, since the outer problem is a
maximization one, an upper bound would not be helpful in guiding the resulting solution towards
optimal ones. The following theorem indicates that Γ̂(Q) is more tractable to use.

Theorem 3.4. For any Q ≥ 0, the following results hold: (i) The inner minimization problem
minπ Ĥ(Q, π) has a unique optimal solution πQ such that πQ = argminπV

π(s) for all s ∈ S and

πQ(a|s) = exp(Q(s,a))∑
a exp(Q(s,a)) , (ii) maxπ V

π(s) = log(
∑
a exp(Q(s, a)))

def
= V Q(s), and (iii) Γ̂(Q) is

concave for Q ≥ 0.

The above theorem tells us that new objective Γ̂(Q) has a closed form where V π(s) is replaced by
V Q(s). Moreover Γ̂(Q) is concave for all Q ≥ 0. The concavity is particularly advantageous, as it
guarantees that the optimization objective is well-behaved and has a unique solution Q∗ such that
(Q∗, πQ

∗
) form a unique saddle point of maxQminπ Ĥ(Q, π). Thus, our tractable objective has

all the nice properties that the original IQ-Learn objective had, while being able to work for the
offline case with multiple levels of expert trajectories and our reward regularizer.

3.4 SPRINQL Algorithm

Algorithm 1 SPRINQL: Inverse soft-Q Learning
with Sub-optimal Demonstrations
Require: (D1,D2, ...,DN ), (w1, w2, ..., wN ), rη, Qψ, πθ
1: # estimate reward reference function
2: for iteration i...Ne do
3: d← (d1, d1, ..., dN ) ∼ (D1,D2, ...,DN )
4: from dataset d, calculate L(rη) by (7)
5: η ← η −∇ηL(rη)
6: end for
7: # train SPRINQL
8: for iteration i...N do
9: d← (d1, d1, ..., dN ) ∼ (D1,D2, ...,DN )
10: # Update Q function
11: from dataset d, calculate ĤC(Qψ, πθ) by (8)
12: ψ ← ψ +∇ψĤC(Qψ, πθ)

13: # Update policy for actor-critic

14: θ ← θ +∇
[
E s∼d
a∼πθ(a|s)

[Qψ(s, a)− ln(πθ(a|s))]
]

15: end for

Algorithm 1 provides the overall SPRINQL al-
gorithm. We first estimate the reference rewards
in lines 2-6 of Algorithm 1 and the overall pro-
cess is described in Section 3.4.1. Before we
proceed to the overall training, we have to esti-
mate the weights, wi (associated with the ranked
demonstration sets) employed in Ĥ(Q, π). We
provide a description of this estimation proce-
dure in Section 3.4.2. Finally, to enhance sta-
bility and mitigate over-estimation issues com-
monly encountered in offline Q-learning, we em-
ploy a conservative version of Ĥ(Q, π) in lines
8-15 of the algorithm and is described in Sec-
tion 3.4.3. Some other practical considerations
are discussed in the appendix.
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3.4.1 Estimating the Reference Reward

We outline our approach to automatically infer the reference rewards r(s, a) from the ranked demon-
strations. The general idea is to learn a function that assigns higher values to higher expert-level
demonstrations. To achieve this, let us define R(τ) =

∑
(s,a)∈τ r(s, a) (i.e., accumulated reward

of trajectory τ ). For two trajectories τi, τj , let τi ≺ τj denote that τi is lower in quality com-
pared to τj (i.e., τi belongs to demonstrations from lower-expert policies, compared to τj). We
follow the Bradley-Terry model of preferences [4, 5] to model the probability P (τi ≺ τj) as
P (τi ≺ τj) =

exp(R(τj))
exp(R(τi))+exp(R(τj))

and use the following loss function:

min
r

{L(r) =
∑
i∈[N ]

∑
(s,a),(s′,a′)∈Di

(r(s, a)− r(s′, a′))2 −
∑

h,k∈[N ],h>k,τi∈Dh,τj∈Dk
lnP (τi ≺ τj)} (7)

where the first term of L(r) serves to guarantee that the reward reference values for (s, a) pairs within
the same demonstration group are similar, and the second term aims to increase the likelihood that
the accumulated rewards of trajectories adhere to the expert-level order. Importantly, it can be shown
below that L(r) is convex in r (Proposition 3.5), making the learning well-behaved. In practice, one
can model r(s, a) by a neural network of parameters θ and optimize L(θ) over θ-space.
Proposition 3.5. L(r) is strictly convex in r.

3.4.2 Preference-based Weight Learning for wi

Each weight parameter wi used in (4) should reflect the quality of the corresponding demonstration
set Di, which can be evaluated by estimating the average expert rewards of these sets. Although
this information is not directly available in our setting, the reward reference values discussed earlier
provide a convenient and natural way to estimate them. This leads to the following formulation for

inferring the weights wi from the ranked data: wi =
E(s,a)∼Di [r̄(s,a)]∑

j∈[N] E(s,a)∼Dj [r̄(s,a)]
.

3.4.3 Conservative soft-Q learning

Over-estimation is a common issue in offline Q-learning due to out-of-distribution actions and
function approximation errors [11]. We also observe this in our IL context. To overcome this issue
and enhance stability, we leverage the approach in [23] to enhance our inverse soft-Q learning. The
aim is to learn a conservative soft-Q function that lower-bounds its true value. We formulate the
conservative inverse soft-Q objective as:

ĤC(Q, π) = −β
∑

s∼D, a∼µ(a|s)

[Q(s, a)] + Ĥ(Q, π) (8)

where µ(a|s) is a particular state-action distribution. We note that in (8), the conservative term is
added to the objective function, while in the conservative Q-learning algorithm [23], this term is
added to the Bellman error objective of each Q-function update. This difference makes the theory
developed in [23] not applicable. In Proposition 3.6 below, we show that solving maxQ ĤC(Q) will
always yield a Q-function that is a lower bound to the Q function obtained by solving maxQ Ĥ(Q, π).

Proposition 3.6. Let Q̂ = argmaxQĤ(Q, π) and Q̂C = argmaxQĤC(Q, π), we have∑
s∼D

a∼µ(a|s)
Q̂C(s, a) ≤

∑
s∼D

a∼µ(a|s)
Q̂(s, a).

We can adjust the scale parameter β in Equation 8 to regulate the conservativeness of the objective.
Intuitively, if we optimize Q over a lower-bounded Q-space, increasing the scale parameter β will
force each Q(s, a) towards its lower bound. Consequently, when β is sufficiently large, Q̂C will
point-wise lower-bound Q̂, i.e., Q̂C(s, a) ≤ Q̂(s, a) for all (s, a).

4 Experiments

4.1 Experiment Setup

Baselines. We compare our SPRINQL with SOTA algorithms in offline IL with sub-optimal
demonstrations: TRAIL [38], DemoDICE [21], and DWBC [37]. Moreover, we also compare with
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other straightforward baselines: BC with only sub-optimal datasets (BC-O), BC with only expert
data (BC-E), BC with all datasets (BC-both), and BC with fixed weight for each dataset (W-BC),
SQIL [29], and IQ-learn [13] with only expert data. In particular, since TRAIL, DemoDICE, and
DWBC were designed to work with only two datasets (one expert and one supplementary), in
problems with multiple sub-optimal datasets, we combine all the sub-optimal datasets into one single
supplementary dataset. Meanwhile, BC-E, BC-O, and BC-both combine all available data into a large
dataset for learning, while W-BC optimizes

∑
i Es,a∼Di−wi ln(π(a|s)), where wi are our weight

parameters. T-REX [5] is a PPO-based IL algorithm that can work with ranked demonstrations. It
is, however, not suitable for our offline setting, so we do not include it in the main comparisons.
Nevertheless, we will later conduct an ablation study to compare SPRINQL with an adapted version
of T-REX. Moreover, [15] developed IPL for learning from offline preference data. This approach
requires comparisons between every pair of trajectories, thus is not suitable for our context.

Environments and Data Generation: We test on five Mujoco tasks [32] and four arm manipulation
tasks from Panda-gym [12]. The maximum number transition of (s, a) per trajectory is 1000 (or 1k for
short) for the Mujoco and is 50 for Panda-gym tasks (descriptions in Appendix B.3). The sub-optimal
demonstrations have been generated by randomly adding noise to expert actions and interacting with
the environments. We generated large datasets of expert and non-expert demonstrations. For each
seed, we randomly sample subsets of demonstrations for testing. This approach allows us to test with
different datasets across seeds, rather than using fixed datasets for all seeds as in previous works.
More details of these generated databases can be found in the Appendix B.4.

Metric: The return is normalized by score = return−R.return
E.return−R.return × 100 where R.return is the

mean return of random policy and E.return is the mean return of the expert policy. The scores are
calculated by taking the last ten evaluation scores of each seed, with five seeds per report.

Experimental Concerns. Throughout the experiments, we aim to answer the following questions:
(Q1) How does SPRINQL perform compared to other baselines? (Q2) How do the distribution
matching and reward regularization terms impact the performance of SPRINQL? (Q3) What happens
if we augment (or reduce) the expert data while maintaining the sub-optimal datasets? (Q4) What
happens if we augment (or reduce) the sub-optimal data while maintaining the expert dataset? (Q5)
How does the conservative term help in our approach? (Q6) How does increasing N (the number
of expertise levels) affect the performance of SPRINQL? (Q7) Does the preference-based weight
learning approach provide good values for the weights wi? (Q8) How does SPRINQL perform in
recovering the ground-truth reward function?

4.2 Main Comparison Results

In this section, we provide comparison results to answer (Q1) with three datasets (i.e., N = 3).
Additional comparison results for N = 2 can be found in the appendix. From lowest to highest

Mujoco Panda-gym

Cheetah Ant Humanoid Push PnP Slide Avg

BC-E -3.2±0.9 6.4±19.1 1.3±0.2 8.2±3.8 3.7±2.7 0.0±0.0 2.7
BC-O 14.2±2.9 35.2±20.1 10.6±6.3 8.8±4.5 3.9±2.7 0.1±0.3 12.1
BC-both 13.2±3.6 47.0±5.9 9.0±3.5 9.0±4.3 4.4±3.0 0.1±0.4 13.8
W-BC 12.9±2.8 47.3±6.4 19.6±19.0 8.8±4.3 3.7±2.8 0.0±0.0 15.4
TRAIL -4.1±0.3 -4.7±1.9 2.6±0.6 11.7±4.0 7.8±3.7 1.7±1.8 3.9
IQ-E -3.4±0.6 -3.4±1.3 2.4±0.6 26.3±10.9 18.1±12.5 0.1±0.4 6.7
IQ-both -6.1±1.4 -58.2±0.0 0.8±0.0 8.3±3.9 3.8±3.3 0.0±0.2 -8.6
SQIL-E -5.0±0.7 -33.8±7.4 0.9±0.1 9.6±3.3 3.2±2.9 0.1±0.3 -4.2
SQIL-both -5.6±0.5 -58.0±0.4 0.8±0.0 8.2±3.8 3.3±2.3 0.1±0.3 -12.6
DemoDICE 0.4±2.0 31.7±8.9 2.6±0.8 8.1±3.7 4.3±2.4 0.1±0.5 7.9
DWBC -0.2±2.5 10.4±5.0 3.7±0.3 36.9±7.4 25.0±6.3 11.6±4.4 14.6

SPRINQL (ours) 73.6±4.3 77.0±5.6 82.9±11.2 72.0±5.3 63.2±6.4 37.7±6.6 67.7

Table 1: Comparison results for three Mujoco and three Panda-gym tasks.
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expertise levels, we randomly sample (25k-10k-1k) transitions for Mujoco tasks and (10k-5k-100)
transitions for Panda-gym tasks for every seed (details of these three-level dataset are provided in
Appendix B.4). Table 1 shows comparison results across 3 Mujoco tasks and 3 Panda-gym tasks
(the full results for all the nine environments are provided in Appendix C.1). In general, SPRINQL
significantly outperforms other baselines on all the tasks.

4.3 Ablation Study - No Distribution Matching and No Reward Regularizer

We aim to assess the importance of the distribution matching and reward regularizer terms in our
objective (Q2). To this end, we conduct an ablation study comparing SPRINQL with two variants:
(i) noReg-SPRINQL, derived by removing the reward regularizer term from (6), and (ii) noDM-
SPRINQL, obtained by removing the distribution matching term from (6). Here, we note that the
noDM-SPRINQL performs Q-learning using the reward reference function, this can viewed as an
adaption of the T-REX algorithm [5] to our offline setting. The conservative Q-learning term is
employed in the SPRINQL and the two variants to enhance stability. The comparisons for N = 2
and N = 3 on five Mujoco tasks are shown in Figure 1 (the full comparison results for all tasks are
provided in the appendix). These results clearly show that SPRINQL outperforms the other variants,
indicating the value of both terms in our objective function.

Cheetah

2 3
number of levels

0

50

100
Ant

2 3
number of levels

0

50

100
Walker

2 3
number of levels

0

50

100

Hopper

2 3
number of levels

0

50

100
Humanoid

2 3
number of levels

0

50

100

noReg-SPRINQL noDM-SPRINQL SPRINQL expert

Figure 1: Comparison of three variants of SPRINQL across five Mujoco environments.

4.4 Other Experiments

Experiments addressing the other questions are provided in the appendix. Specifically, Sections C.1
and C.2 provide full comparison results for all the Mujoco and Panda-gym tasks for three and two
datasets (i.e., N = 3 and N = 2), complementing the answer to Q1. Section C.3 provides the
learning curves of the three variants considered in Section 4.3 above (answering Q2). Section C.4
provides experiments to answer Q3 (what would happen if we augment the expert dataset?) and
Section C.5 addresses Q4 (what would happen if we augment the sub-optimal dataset?). Section C.6
experimentally shows the impact of the conservative term in our approaches (i.e., Q5). Section C.7 re-
ports the performance of SPRINQL with varying numbers of expertise levels N (i.e., Q6). Section C.8
addresses Q7, and Section C.10 shows how SPRINQL performs in terms of reward recovering (i.e.
Q8). In addition, Section C.11 reports the distributions of the reference rewards and Section C.12
provides α choosing range.

Concretely, our extensive experiments reveal the following: (i) SPRINQL outperforms other baselines
with two, three, or even larger numbers of datasets; (ii) the conservative term, distribution matching,
and reward regularizer terms are essential to our objective—all three significantly contribute to
the success of SPRINQL; (iii) the preference-based weight learning provides good estimates for
the weights wi; and (iv) SPRINQL performs well in recovering rewards, showing a high positive
correlation with the ground-truth rewards, justifying the use of our method for IRL.

5 Conclusion and Limitations

(Conclusion) We have developed SPRINQL, a novel non-adversarial inverse soft-Q learning algo-
rithm for offline imitation learning from expert and sub-optimal demonstrations. We have demon-
strated that our algorithm possesses several favorable properties, contributing to its well-behaved,
stable, and scalable nature. Additionally, we have devised a preference-based loss function to au-
tomate the estimation of reward reference values. We have provided extensive experiments based
on several benchmark tasks, demonstrating the ability of our SPRINQL algorithm to leverage both
expert and non-expert data to achieve superior performance compared to state-of-the-art algorithms.
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(Limitations) Some limitations of this work include: (i) SPRINQL (and other baselines) still requires
a large amount of sub-optimal datasets with well-identified expertise levels to learn effectively, (ii)
there is a lack of theoretical investigation on how the sizes of the expert and non-expert datasets affect
the performance of Q-learning, which we find challenging to address, and (iii) it lacks a theoretical
exploration of how the reward regularizer term enhances the distribution matching term when expert
samples are low—this question is relevant and interesting but also challenging to address. These
limitations will pave the way for our future work.
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A Missing Proofs

We provide proofs for the theoritical results claimed in the main paper.

Proposition 3.1 J(Q, π) is concave in Q but is not convex in π.

Proof. We recall that

J(Q, π) =
∑
i∈[N ]

wiEρi [T π[Q](s, a))]− Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)]

− αEρU [(T π[Q](s, a))− r(s, a))2] (9)

where T π[Q](s, a)) = Q(s, a) − γEs′∼P (s′|s,a)[V
π(s′)] and V π(s) = Ea∼π(a|s)[Q(s, a) −

log π(a|s)]. We see that T π[Q](s, a) is linear in Q for any (s, a). Thus, the first and second
terms of J(Q, π) in (9) are linear in Q. The last term of (9) involves a sum of squares of linear
functions of Q, which are convex. So, J(Q, π) is concave in Q.

To see that J(Q, π) is generally not convex in π, we will consider a quadratic component of the
reward regularization term (T π[Q](s, a))− r(s, a))2 and show that there is an instance of Q and r
values that makes this term convex. We first write:

T π[Q](s, a))− r(s, a) = Q(s, a)− γ
∑
s′

P (s′|s, a)V π(s′)− r(s, a)

= Q(s, a)− γ
∑
s′

P (s′|s, a)
∑
a′′

π(a′′|s′)(Q(s′, a′′)− log π(a′′|s′))− r(s, a)

For simplification, let us choose Q(s′, a′′) = 0 for all s′ such that P (s′|s, a) > 0. This allows us to
simplify T π[Q](s, a))− r(s, a) as

T π[Q](s, a))− r(s, a) = γ
∑
s′

P (s′|s, a)
∑
a′′

π(a′′|s′) log π(a′′|s′) +Q(s, a)− r(s, a)

We further see that, for any s ∈ S,
∑
a∈A π(a|s) log π(a|s) achieves its minimum value at π(a|s) =

1/|A| for all a ∈ |A|, and
∑
a∈A π(a|s) log π(a|s) ≥ log 1/|A| for any policy π. As a result we

have:
γ
∑
s′

P (s′|s, a)
∑
a′′

π(a′′|s′) log π(a′′|s′) ≥ γ log
1

|A|

So if we select Q(s, a) such that Q(s, a)− r(s, a)− γ log |A| ≥ 0, then T π[Q](s, a))− r(s, a) ≥ 0

for any π. Now we consider the quadratic function Γ(π) = (λ(π))
2 where λ(π) = T π[Q](s, a))−

r(s, a). Since each term π(a′′) log π(a′′|s′) is convex in π, λ(π) is convex in π. To show Γ(π) is
convex in π, we will show that for any two policies π1, π2 and α ∈ [0, 1], Γ(απ1 + (1− α)π2) ≤
αΓ(π1) + (1− α)Γ(π). To this end, we write

αΓ(π1) + (1− α)Γ(π)
(a)

≥ (αλ(π1) + (1− α)λ(π2))
2

(b)

≥ (λ(απ1 + (1− α)π2))
2

= Γ(απ1 + (1− α)π2)

where (a) is because the function h(t) = t2 is convex in t, and (b) is because

(i) αλ(π1) + (1− α)λ(π2) ≥ λ(απ1 + (1− α)π2) (as λ(π) is convex in π)

(ii) αλ(π1) + (1 − α)λ(π2) and λ(απ1 + (1 − α)π2) are both non-negative, and function
h(t) = t2 is increasing for all t ≥ 0.

So, we see that with the Q values chosen above, function (T π[Q](s, a))− r(s, a))2) is convex and
−α(T π[Q](s, a)− r(s, a))2 is concave. So, intuitively, when α is sufficiently large, J(Q, π) would
be almost concave (so not convex), which is the desired result.
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Proposition 3.2 J(Q, π) may not necessarily be minimized at πQ such that πQ = argmaxπ V π(s),
for all s ∈ S.

Proof. We first write J(Q, π) as

J(Q, π) =
∑
i∈[N ]

wiEρi [T π[Q](s, a))]− Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)]

− αEρU [(T π[Q](s, a))− r(s, a))2]

=
∑
i∈[N ]

wiEρi [Q(s, a)− γEs′V π(s′)]− (1− γ)Es0V π(s0)

− αEρU [(Q(s, a)− r(s, a)− γEs′V π(s′))2] (10)

We then see that the terms Eρi [Q(s, a) − γEs′V π(s′)] and −γEs0V π(s0) are minimized (over π)
when V π(s), for all s, are maximized. We will prove that it would not be the case for the last term.
Let us choose Q and r such that Q(s, a) − r(s, a) > γEs′V πQ(s′). We see that for any policy
π ̸= πQ, we have

Q(s, a)− r(s, a) > γEs′V πQ(s′) ≥ Es′V π(s′)

Thus, Q(s, a)− r(s, a)− V π(s′) ≥ Q(s, a)− r(s, a)− V πQ(s′) > 0

which implies that

−αEρU [(Q(s, a)− r(s, a)− γEs′V π(s′))2] ≤ −αEρU [(Q(s, a)− r(s, a)− γEs′V πQ(s′))2]

So the last term of (10) would not be minimized at π = πQ. In fact, in the above scenario, this last
term will be maximized at π = πQ. As a result, there is always α sufficiently large such that the last
term significantly dominates the other terms and J(Q, π) is not minimized at π = πQ.

Proposition 3.3 For any Q ≥ 0, we have Γ̂(Q) ≤ Γ(Q) and maxQ≥0 Γ̂(Q) ≤ maxQ≥0 Γ(Q).
Mover, Γ(Q) = Γ̂(Q) if Q(s, a) ≤ r(s, a) for all s, a.

Proof. We first write Ĥ(Q, π) as

Ĥ(Q, π) =
∑
i∈[N ]

wiEρi [T π[Q](s, a))]− Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)]

− αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s)

]
(11)

Since Q ≥ 0, V π(s) = Ea∼π(.|s)[Q(s, a) − log π(a|s)] ≥ 0. Thus 2ReLU(r(s, a) −
Q(s, a))Es′V π(s) ≥ 2(r(s, a)−Q(s, a))Es′V π(s). As a result, the last term of Ĥ(Q, π) is bounded
as

− αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s)

]

≤ −αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 − 2(Q(s, a)− r(s, a))Es′V π(s)

]
= −αEρU [(T π[Q](s, a)− r(s, a))2]

It then follows that Ĥ(Q, π) ≤ J(Q, π). Thus, minπ Ĥ(Q, π) ≤ minπ J(Q, π) or Γ̂(Q) ≤ Γ(Q).
Mover, we see that if r(s, a) ≥ Q(s, a) for all (s, a), then 2ReLU(r(s, a) − Q(s, a))Es′V π(s) =

2(r(s, a)−Q(s, a))Es′V π(s), implying that Ĥ(Q, π) = J(Q, π) and Γ̂(Q) = Γ(Q). This completes
the proof.
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Theorem 3.4 For any Q ≥ 0, the following results hold

(i) The inner minimization problem minπ Ĥ(Q, π) has a unique optimal solution π∗ such that
πQ = argminπV

π(s) for all s ∈ S and

πQ(a|s) = exp(Q(s, a))∑
a exp(Q(s, a))

.

(ii) maxπ V
π(s) = log(

∑
a exp(Q(s, a)))

def
= V Q(s).

(iii) Γ̂(Q) is concave for Q ≥ 0

Proof. We first rewrite the formulation of Ĥ(Q, π) as

Ĥ(Q, π) =
∑
i∈[N ]

wiEρi [Q(s, a)− γEs′V π(s′)]− (1− γ)Es0V π(s0)

− αEρU

[
(Q(s, a)− r(s, a))2 + (Es′V π(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V π(s)

]

We then see that the first and second term of Ĥ(Q, π) are minimized when V π(s) are minimized,
i.e., at π = πQ. For the last term, since V π(s) ≥ 0 (because Q ≥ 0), −(Es′V π(s′))2 and
−2ReLU(r(s, a)−Q(s, a))Es′V π(s) are also minimized at π = πQ. So, Ĥ(Q, π) is minimized at
π = πQ as desired.

(ii) is already proved in [13].

For (iii), we rewrite Ĥ(Q, π) as

Ĥ(Q, π) =
∑
i∈[N ]

wiEρi [T π[Q](s, a)]− (1− γ)Es0,a∼π(a|s0)[Q(s0, a)− log π(a|s0)]

− αEρU

[
(r(s, a)−Q(s, a)) + Es′V π(s))2

]
+ αEρU

[
(min{0, r(s, a)−Q(s, a))

]
=

∑
i∈[N ]

wiEρi [T π[Q](s, a)]− (1− γ)Es0,a∼π(a|s0)[Q(s0, a)− log π(a|s0)]

− αEρU

[
(r(s, a)−Q(s, a)) + Es′V π(s))2

]
+ αEρU

[
(min{0, r(s, a)−Q(s, a))

]
(12)

Then, the first and second terms of (12) is linear in Q. The fourth term is concave. For third term, let
Φ(Q) = |r(s, a)−Q(s, a)|+ Es′V π(s). We see that Φ(Q) ≥ 0 for any Q ≥ 0 and Φ(Q) is convex
in Q (because V π(s) is linear in Q). It then follows that, for any η ∈ [0, 1] and Q1, Q2 ≥ 0, we have

η(Φ(Q))2 + (1− η)(Φ(Q))2
(a)

≥ (ηΦ(Q) + (1− η)Φ(Q))2

(b)

≥ (Φ(ηQ1 + (1− η)Q2))
2 (13)

where (a) is due to the fact function h(t) = t2 is convex, and (b) is because h(t) = t2 is non-
decreasing for all t ≥ 0, and Φ(Q) is convex and always takes non-negative values. The last
inequality in(13) implies that (Φ(Q))2 is convex in Q. So the last term of (12) is concave in Q.
Putting all together we conclude that Ĥ(Q, π) is concave in Q as desired.

Proposition 3.5 L(r) is strictly convex in r.
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Proof. We first write L(r) as

L(r) =
∑
i∈[N ]

∑
(s,a),(s′,a′)∈Di

(r(s, a)− r(s′, a′))2 −
∑

h,k∈[N ],h<k

τi∈Dh,τj∈Dk

ln
exp(R(τj))

exp(R(τj)) + exp(τi)()
+ ϕ(r)

(14)

=
∑
i∈[N ]

∑
(s,a),(s′,a′)∈Di

(r(s, a)− r(s′, a′))2 −
∑

h,k∈[N ],h<k

τi∈Dh,τj∈Dk

(
R(τj)

− ln (exp(R(τj)) + exp(R(τi))) + ϕ(r)
)

(15)

We then see that the first term is a sum of squares of linear functions of r, thus is strictly convex.
Moreover, since R(τi) is linear in r for any τi , the term ln(exp(R(τi)) + exp(R(τj))) has a log-
sum-exp form. So this term is convex as well [3]. Putting all together we see that L(r) is strictly
convex in r as desired.

Proposition 3.6 Let Q̂ = argmaxQĤ(Q, π) and Q̂C = argmaxQĤC(Q, π), we have∑
s∼D

a∼µ(a|s)

Q̂C(s, a) ≤
∑
s∼D

a∼µ(a|s)

Q̂(s, a)

Proof. We write

ĤC(Q̂C , π) = −β
∑
s∼D

a∼µ(a|s)

Q̂C(s, a) + Ĥ(Q̂C , π) (16)

(a)

≥ −β
∑
s∼D

a∼µ(a|s)

Q̂(s, a) + Ĥ(Q̂, π)

(b)

≥ −β
∑
s∼D

a∼µ(a|s)

Q̂(s, a) + Ĥ(Q̂C , π) (17)

where (a) is because Q̂C = argmaxQĤC(Q, π) and (b) is because Ĥ(Q̂, π) ≥ Ĥ(Q̂C , π). Combine
(16) and (17) we get

β
∑
s∼D

a∼µ(a|s)

Q̂C(s, a) ≤ β
∑
s∼D

a∼µ(a|s)

Q̂(s, a)

as desired.

B Additional Details

B.1 Practical Training Objective

We discuss a practical implementation of the training objective in (4) using samples from both
the expert and sub-optimal demonstration sets. We first note that the term Eρπ [T π[Q](s, a))] −
Eρπ [log π(s, a)] can be written as [13]:

Eρπ [T π[Q](s, a))]−Eρπ [log π(s, a)] = E(s,s′)∼ρ∗ [V
π(s)− γEs′V π(s′)]

for any valid occupancy measure ρ∗. So, for any policy occupancy measure, we can write this term
though the union of expert policies ρU as

Eρπ [T π[Q](s, a))]− Eρπ [log π(s, a)] =
∑
i∈[N ]

wiEρi [V π(s)− γEs′V π(s′)] (18)
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As a result, by replacing V π(s) with V Q(s), we can write Γ̂(Q) in a compact form as

Γ̂(Q) =
∑
i∈[N ]

wiEρi [Q(s, a)− γEs′V Q(s′)]

−
∑
i∈[N ]

wiEρi [V Q(s)− γEs′V Q(s′)]− α
∑
i∈[N ]

wiEρi [∆Q
r (s, a)] (19)

where ∆Q
r (s, a) = (Q(s, a)− r(s, a))2 + (Es′V Q(s′))2 + 2ReLU(r(s, a)−Q(s, a))Es′V Q(s′).

In an empirical offline implementation, to maximize Γ̂(Q), samples (s, a, s′) from demonstra-
tions can be used to approximate the expectations over ρi:

∑
(s,a,s′)∈Di [Q(s, a) − γV Q(s′)],∑

(s,a,s′)∈Di [V
Q(s)− γV Q(s′)], and

∑
(s,a)∈Di [∆

Q
r (s, a)].

We note that in continuous-action controls, the computation of V Q(s) involves a sum over infinitely
many actions, which is impractical. In this case, we can update both Q and π in a soft actor-critic
(SAC) manner. That is, for each π, we update Q towards maxQ{Ĥ(Q, π)} and for each Q, we update
π to bring it towards πQ by solving maxπ{V π(s)}, for all s. As shown above, Ĥ(Q, π) in concave
in Q and V π(s) is convex in π, so we can expect this SAC will exhibit good behavior and stability.

B.2 Algorithm Overview

The Figure 2 provide the overview of our algorithm.

Figure 2: Overview of SPRINQL.

B.3 Environments

This section provide a detailed descrition of the enviroments used in our experiments.

B.3.1 Mujoco

MuJoCo gym environments [32] like HalfCheetah, Ant, Walker2d, Hopper, and Humanoid are
integral to the field of reinforcement learning (RL), particularly in the domain of continuous control
and robotics:

• HalfCheetah: This environment simulates a two-dimensional cheetah-like robot. The
objective is to make the cheetah run as fast as possible, which involves learning complex,
coordinated movements across its body.

• Ant: This environment features a four-legged robot resembling an ant. The challenge is to
control the robot to move effectively, balancing stability and speed.

• Walker2d: This environment simulates a two-dimensional bipedal robot. The goal is to
make the robot walk forward as fast as possible without falling over.
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• Hopper: The Hopper environment involves a single-legged robot. The primary challenge
is to balance and hop forward continuously, which requires maintaining stability while in
motion.

• Humanoid: The Humanoid environment is among the most complex, featuring a bipedal
robot with a human-like structure. The task involves mastering various movements, from
walking to more complex maneuvers, while maintaining balance.

An expert is trying to maximize the reward function by moving with a trajectory length limit of 1000.
All five environments are shown in Figure 3.

Cheetah Ant Walker Hopper Humanoid

Figure 3: Five different Mujoco environments.

B.3.2 Panda-gym

The Panda-gym environments [12], designed for the Franka Emika Panda robot in reinforcement
learning, include PandaReach, PandaPush, PandaPickandPlace, and PandaSlide. Here’s a short
description of each:

• PandaReach: The task is to move the robot’s gripper to a randomly generated target position
within a specific volume. It focuses on precise control of the gripper’s movement.

• PandaPush: In this environment, a cube placed on a table must be pushed to a target
position. The gripper remains closed, emphasizing the robot’s ability to manipulate objects
through pushing actions.

• PandaPickandPlace: This more complex task involves picking up a cube and placing it at
a target position above the table. It requires coordinated control of the robot’s gripper for
both lifting and accurate placement.

• PandaSlide: Here, the robot must slide a flat object (like a hockey puck) to a target position
on a table. The gripper is fixed in a closed position, and the task demands imparting the
right amount of force to slide the object to the target.

In these environments, the reward function is -1 for every time step it has not finished the task.
Moreover, the maximum horizon is extremely short, with a maximum of 50, while an expert can
complete the task after several steps. All four different environments are shown in Figure 4.

Reach Push PnP Slide

Figure 4: Five different Panda-gym environments.

B.4 Qualities of the Generated Expert and Non-Expert Datasets

In this paper, we provide a new setting utilizing ranked sub-optimal datasets to perform imitation
learning in the offline setting (illustration in Figure 5).
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Increasing optimality

Ranked sub-optimal datasets

1 (expert)23N

Figure 5: Training datasets illustration.

We create sub-optimal datasets by adding noise to actions of the expert policy and let them interact
with the environments to collect the sub-optimal trajectories. Each task has its own difficulty and
sensitivity to the noise of the actions. The averaged returns of the generated datasets, computed as
percentages w.r.t. the maximum returns, are reported in Figure 6.
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Figure 6: Whisker plots illustrate the average returns of both expert and non-expert datasets nine
distinct environments in Mujoco and Panda-gym. The numerical values following the task names
represent the actual mean return of the expert policy.

B.5 Hyper Parameters and Experimental Implementations

• In our experiments, for every algorithm, we run five different seeds corresponding to five
different datasets sampled from our databases in Appendix B.4.

• We use double Q critic network for our implementation to increase the stability in the offline
training scheme.

• For IQ-learn [13],SQIL [29], we conduct experiment from its official implement with
double Q critic network.

• For DemoDICE [21] we conduct experiment from its official implementation.
• For DWBC [37] we conduct experiment from its official implementation.
• Inspired by double Q-learning, to avoid overfitting in the offline setting, some experiments

apply a training trick using KL-divergence between the target actor and the training actor to
prevent rapid policy changes.

• For SAC-based algorithms, we use a fixed exploration parameter which is commonly used
in previous work.

• We conducted all experiments on a total of 8 NVIDIA RTX A5000 GPUs and 64 core CPUs.
We use 1 GPUs and 8 core CPUs per task with approximately one day per 5 seeds. The
detailed hyper-parameters are reported in Table 2.
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HYPER PARAMETER BC-BASED SPRINQL

ACTOR NETWORK [256,256] [256,256]
CRITIC NETWORK [256,256] [256,256]
TRAINING STEP 1,000,000 1,000,000
GAMMA 0.99 0.99
LR ACTOR 0.0001 0.00003
LR CRITIC 0.0003 0.0003
LR REWARD REFERENCE 0.0003 0.0003
BATCH SIZE 256 256
SOFT UPDATE CRITIC FACTOR - 0.005
SOFT UPDATE ACTOR FACTOR - 0.00003
EXPLORATION TEMPERATURE - 0.01
REWARD REGULARIZE TEMPERATURE (α) - 1.0
CQL TEMPERATURE (β) - 1.0

Table 2: Hyper parameters.

C Supplementary Experiments

In this section, we present additional experiments that complement those reported in the main paper,
along with ablation studies to address the experimental questions stated therein.

C.1 Full Experiment Results for Mujoco and Panda-gym

We report the full results for the 5 different Mujoco environments and 4 different Panda-gym
environments, with 3 datasets (i.e., N = 3), supplementing the results reported in Table 1 in the main
paper. The detailed results for Mujoco in Table 3 and Panda-gym in Table 4

Cheetah Ant Walker Hopper Humanoid Avg

BC-E -3.2±0.9 6.4±19.1 0.3±0.4 8.3±4.1 1.3±0.2 2.6
BC-O 14.2±2.9 35.2±20.1 66.1±10.8 16.7±4.0 10.6±6.3 29.0
BC-both 13.2±3.6 47.0±5.9 63.9±7.3 22.6±12.8 9.0±3.5 31.1
W-BC 12.9±2.8 47.3±6.4 58.6±9.1 20.9±6.6 19.6±19.0 31.9
TRAIL -4.1±0.3 -4.7±1.9 0.2±0.3 1.1±0.5 2.6±0.6 -1.0
IQ-E -3.4±0.6 -3.4±1.3 0.1±0.7 0.3±0.2 2.4±0.6 -0.8
IQ-both -6.1±1.4 -58.2±0.0 -0.2±0.1 0.0±0.0 0.8±0.0 -12.7
SQIL-E -5.0±0.7 -33.8±7.4 0.2±0.2 0.2±0.0 0.9±0.1 -7.5
SQIL-both -5.6±0.5 -58.0±0.4 -0.2±0.0 0.0±0.0 0.8±0.0 -12.6
DemoDICE 0.4±2.0 31.7±8.9 7.2±3.1 18.7±7.5 2.6±0.8 12.1
DWBC -0.2±2.5 10.4±5.0 25.1±16.3 66.0±20.9 3.7±0.3 21.0

SPRINQL (ours) 73.6±4.3 77.0±5.6 87.9±14.2 70.0±23.8 82.9±11.2 78.3

Table 3: Comparison results for Mujoco tasks.

20



Reach Push PnP Slide Avg

BC-E 13.9±5.9 8.2±3.8 3.7±2.7 0.0±0.0 6.5
BC-O 16.2±5.5 8.8±4.5 3.9±2.7 0.1±0.3 7.3
BC-both 16.3±5.0 9.0±4.3 4.4±3.0 0.1±0.4 7.3
W-BC 15.7±5.1 8.8±4.3 3.7±2.8 0.0±0.0 7.0
TRAIL 18.3±5.1 11.7±4.0 7.8±3.7 1.7±1.8 9.9
IQ-E 97.7±2.4 26.3±10.9 18.1±12.5 0.1±0.4 35.6
IQ-both 5.7±3.4 8.3±3.9 3.8±3.3 0.0±0.2 4.5
SQIL-E 22.1±15.1 9.6±3.3 3.2±2.9 0.1±0.3 8.8
SQIL-both 8.0±4.2 8.2±3.8 3.3±2.3 0.1±0.3 4.9
DemoDICE 14.0±5.3 8.1±3.7 4.3±2.4 0.1±0.5 6.6
DWBC 93.4±4.3 36.9±7.4 25.0±6.3 11.6±4.4 41.7

SPRINQL (ours) 99.8±0.9 72.0±5.3 63.2±6.4 37.7±6.6 68.2

Table 4: Comparison results for Panda-gym tasks.

C.2 Comparison Results for N = 2, i.e., One Expert and One Sub-optimal Datasets - Q1

We provide additional comparison results for N = 2, complementing to the answer of (Q1), i.e.,
how does SPRINQL perform compared to other baselines? In this experiment, we want to test the
ability of our algorithm in the same scenario of DemoDICE, DWBC which include expert dataset
and only one supplementary dataset. Number of expert transitions in Mujoco domains is 1000 and
100 for Panda-gym. Meanwhile, for the supplementary dataset, it is 25000 transitions for Mujoco and
5000 for Panda-gym. In general, although we experience a downgrade in performance due to lack of
ranking (only one supplementary dataset), leading to misunderstanding the true reward function, our
method is still able to leverage the sub-optimal dataset for understanding the expert demonstrations
and provide the highest average score. Reported results are shown in Table 5 6 and Figure 7.

Method Cheetah Ant Walker Hopper Humanoid Avg

BC 3.4±1.3 39.2±6.6 45.5±14.4 28.4±9.0 24.4±25.2 28.2
W-BC 3.1±1.0 39.6±7.3 46.1±12.3 29.5±9.0 28.6±27.8 29.4
DemoDICE -1.6±0.6 31.6±7.5 6.5±1.7 31.9±12.3 2.7±0.6 14.2
DWBC -1.2±1.3 9.5±3.4 13.1±4.7 87.0±22.2 4.2±0.4 22.5

SPRINQL (ours) 49.2±18.5 56.9±8.2 77.8±17.6 39.1±21.0 32.4±6.4 51.1

Table 5: Comparison results for Mujoco tasks in two expert datasets.

Method Reach Push PnP Slide Avg

BC 17.1±4.8 8.1±3.8 3.6±2.4 0.3±0.6 7.3
W-BC 18.5±5.2 9.8±4.5 3.4±3.1 0.1±0.4 8.0
DemoDICE 14.8±5.7 8.8±4.4 3.8±2.9 0.2±0.6 6.9
DWBC 98.2±2.4 38.4±7.4 27.7±8.1 14.5±4.3 44.7

SPRINQL (ours) 93.9±3.3 61.3±7.2 64.2±6.7 26.6±5.5 61.5

Table 6: Comparison results for Panda-gym tasks in two expert datasets.
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Figure 7: Learning curves of two dataset experiment.

C.3 Learning Curves of noReg-SPRINQL and noDM-SPRINQL

This section reports additional results for the comparison between SPRINQL and the two variants
noReg-SPRINQL and noDM-SPRINQL (supplementing the answer of Q2 in the main paper). The
comparison results for Panda-gym environments are reported in Figure 8 and the learning curves are
plotted in Figure 9 and Figure 10.
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Figure 8: Ablation study show the performance of three variants of SPRINQL across four Panda-gym
environments.
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Figure 9: Two term ablation study for two level dataset scenario.
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Figure 10: Two term ablation study for three level dataset scenario.

C.4 Augmented Expert Demonstrations

We provide experiments to address (Q3) – What happens if we augment the expert data while
maintaining the sub-optimal datasets? To this end, we use two Mujoco and two Panda-gym tasks,
keeping the same sup-optimal datasets and add more expert demonstrations to the training sets. The
comparison results are reported in Figure 11. For the Mujoco tasks, which are more difficult, adding
more expert trajectories significantly enhances the performance of all the algorithms. However, for
the two Panda-gym tasks, the influence of adding more expert data appears to be less significant
in Push and completely absent in PnP. This would be because expert trajectories in these tasks are
typically short, consisting of only 2-7 transitions. Hence, a larger quantity of additional expert data
may be required to enhance performance.
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Figure 11: Comparison results with additional expert demonstrations; (+E) signifies that the expert
dataset is increased from 1k to 5k for Mujoco and from 100 to 500 for Panda-gym, while (noE)
indicates no expert data.

C.5 Augmented Sup-optimal Demonstrations
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Figure 12: Performance comparisons with varied sub-optimal data sizes. The x-axis shows the size
of Level 2 and 3 sup-optimal datasets, and y-axis shows the scores.

In this experiment, we want to answer the question (Q4) – What happens if we augment (or reduce)
the sub-optimal data while maintaining the expert dataset?. We present numerical results to assess
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the impact of sub-optimal data on the performance of our SPRINQL and other baselines. To this end,
we keep the same expert dataset and adjust the non-expert data used in Table 1. The performance is
reported in Fig.12. It is evident that reducing the amount of data in sub-optimal datasets can result in
a significant degradation in the performance of our SPRINQL and the other baselines. Conversely,
adding more sub-optimal data can enhance overall stability and lead to improved performance.

In the Figure 13 we show the learning curves with varied sizes for sub-optimal datasets. It can be
seem that the overall performance tends to improve with more sup-optimal datasets. In particular, for
the Ant task, our SPRINQL even fails to maintain stability when the sizes of sup-optimal datasets are
low (10k-5k-1k). Moreover, while BC seems to show improvement with more sub-optimal data, the
performance of DWBC and DemoDICE remains unchanged. This may be because these approaches
rely on the assumption that expert demonstrations can be extracted from the sub-optimal data, which
is not the case in our context.
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Figure 13: Evaluation curves with different sub-optimal-dataset size.
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C.6 Impact of the Conservative Term

In this experiment, we aim to answer (Q5) – How does the conservative term help in our approach?
The Equation 8 introduce the conservative Q learning (CQL) term into our work. Here we also test
three variants of our method from Section 4.3 and show the impact of CQL to the final performance.
The experimental results are shown in Figure 14.
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Figure 14: Performance of 3 variant with and without the CQL term in four different environments
accross two domains.

C.7 Performance with Varying Number of Expertise Levels
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Figure 15: Average returns of the 5 HalfCheetah datasets (one expert and four sub-optimals).
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Figure 16: Experiment results for different numbers of sub-optimal datasets. The learning curves are
calculated by mean with shaded by the standard error of 5 data seeds.

We provide an experiment to answer (Q6) - How does increasing N (the number of expertise levels)
affect the performance of SPRINQL? We assess our algorithm with different numbers of expertise
levels to investigate how adding or removing sub-optimal expertise levels influences performance.
Specifically, we keep the same expert dataset comprising 1 expert trajectory and conduct tests with 1
to 4 sub-optimal datasets from the Cheetah task. Details of the average returns of the five datasets are
reported in Fig. 15. In this context, SPRINQL outperforms other algorithms in utilizing non-expert
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demonstrations. Furthermore, BC successfully learns and achieves performance comparable to the
performance of SPRINQL with 2 dataset, while DemoDICE and DWBC struggle to learn. The
detailed results are plotted in Figure 16. In Section (C.2) below, We particularly delve into the
situation of having two datasets (one expert and one sub-optimal), which is a typical setting in prior
work.

C.8 Ablation Study for the Preference-based Weight Learning

We provide this experiment to answer (Q7) – Does the preference-based weight learning approach
provide good values for the weights wi? To this end, we compare the performance of SPRINQL based
on the weights determined by the preference-based methods described in the main paper (denoted as
auto W), and the following weighting scenarios:

• Uniform W: We chose the weights wi uniformly over [0, 1] as w = {0.55, 0.35, 0.15} with
a ratio of approximately 10 : 7 : 4.

• Reduced W: Starting from Uniform W, we reduced the weights of the non-expert data and
tested the weights w = {0.65, 0.2, 0.15} with a ratio of approximately 10 : 3 : 2.

• Increased W: Starting from Uniform W, we increased the weights of the non-expert data
and chose w = {0.4, 0.32, 0.28} with a ratio of approximately 10 : 8 : 7.

These weight vectors w are normalized to follow w1 > w2 > . . . > wN and
∑
i∈[N ] wi = 1.

The comparison results are shown in Figure 17.
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Figure 17: Experiment results for SPRINQL with different manual selection of weight W .

C.9 D4RL mujoco dataset

In this section, we present additional experiments using the official D4RL dataset. Unfortunately,
since our algorithm requires meaningful demonstrations, we exclude the Random dataset and are only
able to test with N = 2 (Medium and Expert datasets). The detailed results are shown in Figure 18.
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Figure 18: Performance in D4RL dataset with Medium (25,000 transitions) and Expert(1,000
transitions. The results are reported from 5 seeds per method.
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C.10 Reward Recovering

In this experiment, we want to answer (Q8) - How does SPRINQL perform in recovering the ground-
truth reward function? Compared to BC-based algorithms, one notable advantage of Q-learning based
algorithms is their ability to recover the reward function. Here, we present experiments demonstrating
reward function recovery across five MuJoCo tasks, comparing recovered rewards to the actual reward
function. To achieve this, we introduce increasing levels of random noise to the actions of a trained
agent and observe its interactions with the environment. We collect the state, action, and next state
for each trajectory, then predict the recovered reward and compare it to the true reward from the
environment. For the sake of comparison, we include noReg-SPRINQL, which can be considered an
an adaption of IQ-learn [13] to our setting, and noDM-SPRINQL, which is in fact an adaption of
T-REX to our offline setting.

Comparison results are presented in Figure 19. We observe a linear relationship between the true and
predicted rewards for SPRINQL across all testing tasks, whereas the other approaches fail to return
correct relationships for some tasks.
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Figure 19: Recovered return and the true return of five Mujoco environments.
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C.11 Reference Reward Distribution

From the experiment reported in Table 1, we plot the distributions of the reward reference values
in Figure 20, where the x-axis shows the level indexes and the y-axis shows reward values. The
rewards seem to follow desired distributions, with larger rewards assigned to higher expertise levels.
Moreover, rewards learned for expert demonstrations are consistently and significantly higher and
exhibit smaller variances compared to those learned for sub-optimal transitions.
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Figure 20: Whisker plots illustrate the reward reference distribution of three datasets of each environ-
ment for one seed.

C.12 Different alpha ablation study

As our objective is a combination of two terms with a balancing parameter α, we conduct additional
experiments to evaluate the performance of our method across a range of α values. The detailed
results are presented in Figure 21. Overall, the results indicate that α can be selected within the range
of 0.1 to 10 to achieve good performance.
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Figure 21: Performance of SPRINQL in different α. The results are reported from 5 seeds per α
value.
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Justification: All the proofs of the theorems and propositions stated in the main paper are
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whether the code and data are provided or not.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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