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A Appendix / supplemental material542

B Elaborated Experiments and Results Discussion543

B.1 STAR544

We provide results on the STAR Test, further baselines and model ablations for video reasoning tasks545

in table 5.546

Table 5: Left: Results on STAR [72] official hidden test set (evaluation server) with ground-truth
vision (GT V) and predicted vision (PR V); Right: Results on STAR val. set with num. of sampled
frames =32 unless otherwise stated in (); IPRM outperforms prior state-of-art SeviLA-BLIP2 VLM
across question types.

Model Setup STAR-Test
Int. Seq. Pred. Feas. Avg.

Vis-BERT[43] GT V 34.7 35.9 31.2 31.4 34.7
CLIP-BERT[38] GT V 36.3 38.9 30.7 29.8 36.5
NS-SR[72] GT V 42.6 46.3 43.4 43.9 44.5
IPRM GT V 70.5 83.8 85.3 79.1 79.7
Vis-BERT[43] - 33.6 37.2 31.0 30.8 34.8
CLIP-BERT[38] - 39.8 43.6 32.2 31.4 36.7
NS-SR[72] PR V 30.9 31.8 30.2 29.7 30.7
SHG-VQA [62] - 48.0 42.0 35.3 32.5 39.5
GF [3] - 56.1 61.3 52.7 45.7 53.9
mPLUG [40] - 60.4 65.6 57.5 49.6 58.3
IPRM PR V 61.7 72.7 75.4 71.3 70.3

Model Int. Seq. Pred. Feas. Avg.
All-in-One [66] 47.5 50.8 47.7 44.0 47.5
Temp[ATP](32) [5] 50.6 52.8 49.3 40.6 48.3
MIST [16] 55.5 54.2 54.2 44.4 51.1
InternVideo(8) [69] 62.7 65.6 54.9 51.9 58.7
SeViLA-BLIP2 [79] 63.7 70.4 63.1 62.4 64.9
Concat-Att-2L 58.6 64.8 71.0 66.5 63.5
Concat-Att-4L 60.2 66.9 70.8 64.7 64.9
Cross-Att-4L 60.0 67.2 68.9 68.4 65.0
Concat-Att-6L 59.1 66.4 70.7 65.5 64.4
Cross-Att-6L 52.0 57.6 60.4 55.9 55.4
IPRM(m1,t1) 57.8 65.1 71.0 65.3 63.2
IPRM(m1,t9) 63.1 70.3 76.5 68.9 68.1
IPRM(m6,t1) 62.0 70.2 72.7 68.5 67.5
IPRM(m6,t9)(16) 62.9 70.0 76.9 67.1 68.1
IPRM(m6,t9) 64.2 72.9 75.3 69.1 69.9
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B.2 Further comparisons on CLEVR-Humans, CLEVR-CoGenT and NLVRv1547

Here, we provide further comparisons with benchmark-specific methods for CLEVR-Humans [33],548

CLEVR-CoGenT [32] and NLVRv1 [58] (not reported in main paper due to space limitations). As549

mentioned in main paper, these benchmarks utilize synthetic images and are a test of pure visual550

reasoning capabilities that are minimally influenced by increased world knowledge or usage of551

stronger visual backbones.552

CLEVR-Humans as already mentioned in main paper evaluates a model’s reasoning generaliza-553

tion capabilities to unseen scenarios or question forms. CLEVR-CoGenT studies compositional554

attribute generalization. Specifically, it has two conditions – i) cond.A wherein all cubes have color555

∈ {gray, blue, brown, yellow} and cylinders ∈ {red, green, purple, cyan} (spheres can be any556

color), and ii) cond.B wherein color-sets are switched b/w cubes and cylinders. A model is then557

trained on one condition and evaluated on both the original and alternate condition. A higher accuracy558

on the alternate condition indicates that the model learns more ‘compositionally’ as it generalizes559

better to novel shape-color combinations with less feature/attribute combination overfitting.560

Table 6: Elaborated results on CLEVR-Humans (left), CLEVR-CoGenT (middle) and NLVRv1
(right). IPRM achieves state-of-art across the three benchmarks and does not require additional
supervision such as bounding boxes or functional programs. * requires func. programs supervision /
pre-defined dataset-specific neural modules. ▼ requires object bounding-boxes supervision.

Model CLV-Hum
ZS FT

PG+EE* [33] 54.0 66.6
NS-VQA▼* [78] - 67.8
RAMEN [57] 57.8 -
FiLM [55] 56.6 75.9
GLT [4] - 75.8
LEFT [20] - 78.8
MAC [26] 57.4 81.5
MDETR▼ [34] 59.9 81.7
IPRM 63.8 85.5

Model CoGenTr-A CoGenFT-B
ValA ValB ValA ValB

NS-VQA▼* [78] 99.8 63.9 - -
MDETR▼ [34] 99.8 76.7 - -
StackAtt-MLP[76] 80.3 68.7 75.7 75.8
PG + EE* [32] 96.6 73.7 76.1 92.7
Tbd-Net* [50] 98.8 75.4 96.9 96.3
MAC [26] 99.0 78.3 97.2 96.1
FILM [55] 98.3 78.8 81.1 96.9
IPRM 99.1 80.3 98.0 98.2

Model NLVR1
Test-U

CNN-RNN [58] 56.3
MAC [26] 59.4
FILM [55] 61.2
NMN* [2] 62.0
N2NMN* [22] 66.0
CNN-BiATT [60] 66.1
IPRM (scratch) 63.8
IPRM-CLV-FT 73.0

Finally, NLVRv1 evaluates language-grounded visual reasoning. Each sample of this benchmark561

comprises a set of three synthetic images and a composite natural language statement about the562

images which can evaluate to True or False and requires various visual-linguistic reasoning skills.563

As shown in table 6, IPRM achieves state-of-art results across the three benchmarks and does564

not require pre-annotated bounding-boxes or functional programs as additional supervision. For565

CLEVR-Humans (table 6 left), it outperforms larger-scale models such as MDETR and RAMEN566

in zero-shot performance even though the latter is pre-trained on multiple VQA datasets. It also567

increases state-of-art in finetuned setting by 3.8%.568

For CLEVR-CogenT (table 6 centre) , IPRM achieves the highest generalization results amongst569

methods in both the CoGen-Train A and Finetune B. Specifically, it obtains 80.3% acc. on cond. B570

(when trained on cond. A), which is 1.5% higher than the previous state-of-art cond.B method FILM571

and 3.6% higher than MDETR. When further finetuned on cond.B, IPRM generalizes for both cond.A572

and cond.B achieving 98.0% and 98.2% unlike FILM which overfits to cond.B and thereby has poor573

performance on cond.A. Further, its performance on cond.A (99.1%) is highest amongst methods574

that do not utilize bounding box or localization supervision and marginally lower than MDETR and575

NS-VQA (which utilize bounding-box supervision).576

Finally, for NLVRv1 (table 6 right), IPRM model trained from scratch achieves 63.8% acc. and577

performs competitively with existing task-specific state-of-art model CNN-BiAtt. When finetuned578

from its CLEVR checkpoint, we find IPRM achieves 73.0% acc. which is 7% higher than existing579

visual inputs state-of-art for NLVRv1 and suggests strong reasoning transfer capabilities of IPRM. It580

further outperforms the N2NMN method which requires pre-defined neural modules to be identified581

for the dataset.582

B.3 CLIP Integration Results583

We provide results with additional CLIP [56] backbones including CLIP VIT-L/14, CLIP VIT-B/16584

and CLIP VIT-L/14@336px on GQA [27], NLVRv2 [59] and CLEVR-Humans in table 7. We585

compare with alternate prominent vision-language attention mechanisms including Cross-att and586
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Table 7: Left: Comparison of IPRM with prominent vision-language attention mechanisms with
CLIP VIT-L/14 backbones on CLEVR-Humans, GQA and NLVRv2 benchmarks (‘4L’ indicates 4 att
layers; ‘x’ indicates model did not converge). Right: Results with other CLIP variants VIT-B and
VIT-L@ 336 on GQA and NLVRv2. Refer suppl. sec B.3 for further discussion.

Model (CLIP +Param +GFLOPs GQA NLVR2 CLV-H
VIT-L/14 bbone) TestD Test ZS FT
Wt-Proj-Fusion 0.6M 0.1 53.5 60.8 58.5 74.4
Cross-Att (2L) 9.2M 1.5 55.1 62.1 - -
Concat-Att (2L) 7.2M 4.4 55.3 60.5 - -
Cross-Att (4L) 17.6M 3.1 57.4 54.4 60.3 80.0
Concat-Att (4L) 13.6M 8.9 58.1 55.9 61.2 81.1
Cross-Att (6L) 26.0M 4.5 56.8 x 60.8 80.4
Concat-Att (6L) 19.7M 13.3 57.4 x 62.0 81.8
IPRM 5.2M 5.9 59.3 65.1 64.3 84.6

Model (CLIP GQA NLVR2
VIT-B/16 bbone) TestD Test
Wt-Proj-Fusion 51.4 59.9
Cross-Att 54.6 56.6
Concat-Att 56.0 57.4
IPRM 55.9 60.8

Model (CLIP GQA NLVR2
VIT-L/14@336) TestD Test
Wt-Proj-Fusion 54.0 61.1
Cross-Att 57.4 58.4
Concat-Att 57.3 59.1
IPRM 59.4 65.4

Concat-att blocks as well as a simple joint projection of vision and language pooled representations587

(referred as Wt-Proj-Att). As shown in the table, IPRM can enhance performance for the CLIP588

variants across GQA, NLVRv2 and CLV-Humans in comparison to concat and cross-att blocks.589

Further, it is more parameter efficient with only 5.5M additional parameters in comparison to 4-layer590

as well as 2-layer stacks of Cross-Att (9.2M 2-layer, 17.6M 4-layer) and Concat-Att (7.2M 2-layer,591

13.6M 4-layer). With regards to computational FLOPs, IPRM consumes 5.9GFLOPs which is592

marginally higher than Cross-Att 4-layer config (3.1GFLOPs) and lower than Concat-Att 4-layer593

config (8.9GFLOPs). Note, that the performance benefits of adding further layers of cross- or concat-594

att blocks are observed to be minimal after 4 layers, and can also depend on the amount of training595

data available. E.g. Both cross- and concat-att blocks of 2 layers had better performances on NLVRv2596

(which has a limited set of training questions relative to GQA and CLEVR) in comparison to 4 layer597

config.598

B.4 Further reasoning computation visualizations599

We provide elaborate reasoning computation visualizations of IPRM showing the lang. and vis.600

attentions across parallel operations and computation steps during operation formation and operation601

execution stages. Fig. 8 shows a scenario wherein IPRM correctly utilizes parallel and iterative602

computations to compute intermediate operations of “find object close to front", “retrieve/compare603

shape and size", “find applicable objects with both same shape and size". Fig. 9 shows another correct604

prediction of IPRM, and this time, its intermediate reasoning visualization is useful to determine605

that the entailed reasoning appears sensible. Fig. 10 shows an incorrect prediction by IPRM and606

its intermediate reasoning visualizations also suggest that IPRM did not understand the question607

and thereby did not attend to relevant objects. Finally, Fig. 11 shows a scenario wherein while608

IPRM produces the correct answer, it’s intermediate reasoning appears imprecise which makes the609

prediction (and underlying reasoning) less reliable. We provide further visualizations with a CLIP610

VIT-L/14 backbone on GQA samples in the supplemental jupyter notebook output (html format for611

easier viewing).612

C Model implementation and experiment details613

We implement IPRM in PyTorch [53] as a generic vision-language module receiving a set of input614

vision (or scene-representation) tokens and input language (or task-representation) tokens. We615

provide Python-style pseudocode of IPRM in figs 12, 13 and 14. For all experiments, we set616

the internal dimension of IPRM to 512 and use the same configuration of num. parallel operations617

(Nop)=6, num. computation steps (T)=9, reduction ratio (r)=2 and window size (W)=2. We follow618

benchmark-specific conventions for vision-language backbones that are detailed below in sec. C.1.619

For CLIP [56], we utilize the official models from Huggingface [70]. All experiments are performed620

on a single NVIDIA A40 GPU with 46GB memory and averaged over 3 trials with different random621

seeds wherever possible (including STAR, AGQA, CLEVRER-Humans, CLEVR-Humans and GQA).622

Unless otherwise specified, the learning rate is initialized to 1e-4 with Adam [36] optimizer and623

gradient clipping value of 8. The learning-rate is reduced based on validation acc. plateau with624
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reduction factor 0.5, threshold 0.001 and patience 0. Further experiment hyper-parameters and625

settings are provided below. Source code for experiments and visualization along with model626

checkpoints will be released publicly via Github.627

C.1 Benchmark-specific experiment details628

CLEVR-Humans. We use the CLEVR-Humans dataset from [33] which comprises images from629

original CLEVR dataset [32] and human crowdsourced questions. We use a batch size of 216 for630

training. We use the same language encoder (Distil-Roberta[46] from Huggingface[71]) as in existing631

state-of-art MDETR [34] and frozen ResNet101 backbone layer 3 spatial features (as in [26, 50, 33]).632

We perform all ablation experiments with 14x14x1024 visual features. Each ablation model is633

first pretrained for 10 epochs on the original CLEVR dataset (the initial learning rate for IPRM is634

1e-4 and for language encoder is 1e-5) and then finetuned on CLEVR-Humans for 40 epochs with635

early stopping (learning rate of 1e-4 throughout). As observed in prior work [50], we similarly636

found in multiple scenarios with occluded objects that visual attention only partially identified such637

objects. Hence, we simply resampled (bilinear sampling) visual input to obtain 16x16x1024 features638

and empirically found more complete visual attentions with a corresponding 1.1% improvement in639

accuracy. The final two best performing model configurations (Nop=6, T=9, W=2, R=2 and Nop=6,640

T=9, W=2, R=1) from ablations were then pre-trained for 35 epochs on CLEVR and finetuned641

on CLEVR-Humans. While we found that configuration Nop=6, T=9, W=2, R=1 obtains highest642

zero-shot (ZS) acc. of 65.6% and finetuned (FT) acc. of 86.3%, we adopt Nop=6, T=9, W=2, R=2643

(with 63.3% ZS and 85.4% FT acc.) as our optimal model given its lesser parameters and FLOPs.644

GQA. We use the GQA compositional real-world image question answering dataset from [27]. Based645

on prior VQA methods on GQA [27, 23, 43, 31], we utilize pre-extracted bounding-box object646

proposal features and object label predictions obtained from a pretrained object detector [17, 81].647

The bounding box coordinates is normalized to range of 0 to 1 based on the original input image648

size, and the 4 coordinates are transformed to a distributed representation through a learned nonlinear649

projection. This representation is concatenated with a learned projection of the predicted object650

labels (initialized with glove[54] 300dim embeddings) to form the final visual input. We train651

IPRM for 25 epochs with a batch-size of 192 and same hyperparameters as before. We evaluate652

the final model on both the test-dev split and the official test evaluation server / hidden test set653

(https://eval.ai/featured-challenges/225/evaluation). Our test eval server submission654

is anonymous with only submission id and method name used (‘#7024-IPRM’) and a randomly655

generated team name (‘sn12’).656

STAR-VideoQA. We use the STAR-VideoQA dataset for situational reasoning on real-world videos657

from [72]. Based on previous videoQA methods [72, 38, 43] for STAR, we utilize object bounding658

boxes, labels, human pose and human-object relations across frames (note: we do not use the situation659

hyper-graphs or functional programs). We first perform experiments with the provided ground660

truth object bounding boxes, labels and human-object relations as well as provided human pose661

predictions from Alphapose [14] as reported in main paper. Each of these is projected to a distributed662

representation through learned non-linear projections to obtain object token-wise representations.663

A further learnable positional embedding for each frame is added to these representations which664

are then flattened across frames to form the visual input to IPRM. For the language encoder, we665

found both a simple Bi-LSTM and Distil-roberta language encoder obtain similar performance,666

and hence choose the simpler Bi-LSTM as the language model. We evaluate models on both667

16 uniformly sampled frames and 32 uniformly sampled frames, and empirically found using 32668

frames has ∼0.9% higher performance. Since reported models in [72] use 16 frames, we report669

on the same setting in main paper. A batch size of 64 was used with learning rate 1e-4 over 30670

epochs with early stopping. We evaluated the models on both the validation split and official671

test evaluation server https://eval.ai/web/challenges/challenge-page/1325/overview.672

Our submission is anonymous with only submission id and method name used (‘#9644-IPRM’) and a673

randomly generated team name (‘sn12’). For the all-predicted (no ground-truth) visual input setup,674

similar to [72], we utilize a fasterRCNN [17] object extractor, ST-Trans scene graph extractor [8]675

and the same Alphapose predictor to obtain predicted object bounding boxes, labels, human-object676

relations and human poses. We observe a drop of ∼11% in predicted setup similar to observations in677

[72], suggesting further performance can be achieved through better object and relationship detection678

backbones.679

17



AGQAv2. We use the AGQAv2 [18, 19] benchmark that comprises balanced training and test splits.680

We followed the same methodology as in STAR. however, since AGQAv2 comprises a larger number681

of questions and increased diversity in language, we used a distil-roberta language encoder instead of682

a bi-LSTM.683

CLEVRER-Humans. We use the CLEVRER-Humans dataset introduced in [49] for temporal,684

physical and causal video reasoning which comprises videos from the original CLEVRER dataset685

[77]. Similar to in STAR-VideoQA and neurosymbolic models [77, 78], we utilize a pretrained686

faster-RCNN based object localization and attribute prediction network from [77]. We again form687

object-level representations by concatenating learned projections of object-bounding box coordinates688

and predicted object attributes (i.e. color, shape and material). A frame-level learnable positional689

embedding is added and object-tokens across frames are flattened to form the final visual input to690

IPRM. For the language encoder, we used a simple bi-LSTM similar to existing methods. Note we691

do not use the functional programs or event causal graphs in our model. The batch size was 128 with692

a learning rate of 8e-5 and every 4 frames sampled (resulting on average 32 sampled frames). We693

evaluated models in the three setups – from scratch, zero-shot (CLEVRER-pretrained) and finetuned694

(CLEVRER-pretrained). Since the CLEVRER-Humans dataset is relatively small (comprising only695

1076 questions ∼ 8 batches; ∼ 0.5% of original CLEVRER), for scratch training we trained for 250696

epochs (with early stopping) while for finetuning we finetuned for 150 epochs (with 35 epochs for697

original CLEVRER training).698

CLEVR-CoGen. We use the CLEVR-CoGen dataset from [32] and follow the same setup as in699

CLEVR-Humans. We use a simpler bi-LSTM language encoder for experiments since the questions700

are synthetic program-generated unlike in CLEVR-Humans (crowdsourced free-form). We trained701

our model on condition A for 40 epochs (with early stopping) and used the best cond. A validation702

performance model to evaluate generalization performance on cond.B. For finetuning on cond.B we703

finetuned the best cond.A model for 20 epochs and used the best cond.B validation performance704

model to also evaluate on cond.A. All other hyperparameters are the same as mentioned for CLEVR-705

Humans.706

NLVR. We use the NLVRv1 and NLVRv2 datasets from [58, 59]. NLVRv1 comprises 3 synthetic707

images and a language statement while NLVRv2 comprises 2 real-world images and a lang. statement.708

For both datasets, the obtained visual tokens for each images was flattened to obtain the final visual709

input and an image-wise positional embedding was added to indicate image order. For the language710

encoder, we used a simple Bi-LSTM.711

D Limitations712

Our work proposes a new “iterative" and “parallel" reasoning mechanism (IPRM) designed to address713

complex visual reasoning and question answering (VQA) scenarios. While we studied IPRM through714

experiments across various VQA benchmarks along with quantitative ablations and qualitative715

reasoning visualizations, we note some possible limitations of IPRM in this section. Similar to716

existing VQA and deep-learning methods, IPRM may reflect biases that are present in the training717

distribution of VQA benchmarks. This may lead it to overfit to certain image inputs or question718

forms and possibly provide skewed answers in such scenarios. Further, the utilized vision-language719

backbones in our experiments may also entail visual, language and cultural biases in their original720

training distribution which may permeate to IPRM upon integration for VQA scenarios. In this721

regard, we hope the capability to visualize intermediate reasoning of IPRM and diagnose its error722

cases (as discussed in main paper Sec. 4.4) can serve a useful tool to benefit interpretability in VQA723

and identify possible reasoning biases that may emerge in the model.724

E Potential Negative Impact725

In relation to VQA and deep-learning methods in general, the deployment of IPRM in real-world726

applications without thorough consideration of dataset or training distribution biases, could inadver-727

tently reinforce existing vision, language and cultural biases present in the data, leading to erroneous728

outcomes or skewed answers. Further, the deployment of VQA methods such as IPRM in sensitive729

domains such as healthcare or scene/footage analysis could raise ethical concerns, including privacy730

violations, algorithmic reliability, and the potential for unintended consequences stemming from731

erroneous or biased predictions.732
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NeurIPS Paper Checklist733

The checklist is designed to encourage best practices for responsible machine learning research,734

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove735

the checklist: The papers not including the checklist will be desk rejected. The checklist should736

follow the references and follow the (optional) supplemental material. The checklist does NOT count737

towards the page limit.738

Please read the checklist guidelines carefully for information on how to answer these questions. For739

each question in the checklist:740

• You should answer [Yes] , [No] , or [NA] .741

• [NA] means either that the question is Not Applicable for that particular paper or the742

relevant information is Not Available.743

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).744

The checklist answers are an integral part of your paper submission. They are visible to the745

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it746

(after eventual revisions) with the final version of your paper, and its final version will be published747

with the paper.748

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.749

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a750

proper justification is given (e.g., "error bars are not reported because it would be too computationally751

expensive" or "we were unable to find the license for the dataset we used"). In general, answering752

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we753

acknowledge that the true answer is often more nuanced, so please just use your best judgment and754

write a justification to elaborate. All supporting evidence can appear either in the main paper or the755

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification756

please point to the section(s) where related material for the question can be found.757

IMPORTANT, please:758

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",759

• Keep the checklist subsection headings, questions/answers and guidelines below.760

• Do not modify the questions and only use the provided macros for your answers.761

1. Claims762

Question: Do the main claims made in the abstract and introduction accurately reflect the763

paper’s contributions and scope?764

Answer: [Yes]765

Justification: Abstract and introduction reflects the motivation of method and experimental766

results.767

Guidelines:768

• The answer NA means that the abstract and introduction do not include the claims769

made in the paper.770

• The abstract and/or introduction should clearly state the claims made, including the771

contributions made in the paper and important assumptions and limitations. A No or772

NA answer to this question will not be perceived well by the reviewers.773

• The claims made should match theoretical and experimental results, and reflect how774

much the results can be expected to generalize to other settings.775

• It is fine to include aspirational goals as motivation as long as it is clear that these goals776

are not attained by the paper.777

2. Limitations778

Question: Does the paper discuss the limitations of the work performed by the authors?779

Answer: [Yes]780
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Justification: Limitations are provided in appendix.781

Guidelines:782

• The answer NA means that the paper has no limitation while the answer No means that783

the paper has limitations, but those are not discussed in the paper.784

• The authors are encouraged to create a separate "Limitations" section in their paper.785

• The paper should point out any strong assumptions and how robust the results are to786

violations of these assumptions (e.g., independence assumptions, noiseless settings,787

model well-specification, asymptotic approximations only holding locally). The authors788

should reflect on how these assumptions might be violated in practice and what the789

implications would be.790

• The authors should reflect on the scope of the claims made, e.g., if the approach was791

only tested on a few datasets or with a few runs. In general, empirical results often792

depend on implicit assumptions, which should be articulated.793

• The authors should reflect on the factors that influence the performance of the approach.794

For example, a facial recognition algorithm may perform poorly when image resolution795

is low or images are taken in low lighting. Or a speech-to-text system might not be796

used reliably to provide closed captions for online lectures because it fails to handle797

technical jargon.798

• The authors should discuss the computational efficiency of the proposed algorithms799

and how they scale with dataset size.800

• If applicable, the authors should discuss possible limitations of their approach to801

address problems of privacy and fairness.802

• While the authors might fear that complete honesty about limitations might be used by803

reviewers as grounds for rejection, a worse outcome might be that reviewers discover804

limitations that aren’t acknowledged in the paper. The authors should use their best805

judgment and recognize that individual actions in favor of transparency play an impor-806

tant role in developing norms that preserve the integrity of the community. Reviewers807

will be specifically instructed to not penalize honesty concerning limitations.808

3. Theory Assumptions and Proofs809

Question: For each theoretical result, does the paper provide the full set of assumptions and810

a complete (and correct) proof?811

Answer: [NA]812

Justification: Paper does not include theoretical results.813

Guidelines:814

• The answer NA means that the paper does not include theoretical results.815

• All the theorems, formulas, and proofs in the paper should be numbered and cross-816

referenced.817

• All assumptions should be clearly stated or referenced in the statement of any theorems.818

• The proofs can either appear in the main paper or the supplemental material, but if819

they appear in the supplemental material, the authors are encouraged to provide a short820

proof sketch to provide intuition.821

• Inversely, any informal proof provided in the core of the paper should be complemented822

by formal proofs provided in appendix or supplemental material.823

• Theorems and Lemmas that the proof relies upon should be properly referenced.824

4. Experimental Result Reproducibility825

Question: Does the paper fully disclose all the information needed to reproduce the main ex-826

perimental results of the paper to the extent that it affects the main claims and/or conclusions827

of the paper (regardless of whether the code and data are provided or not)?828

Answer: [Yes]829

Justification: Benchmark and training details are provided along with module pseudocode830

and example CLIP integration. Source code for experiments will made publicly available831

along with checkpoints.832

Guidelines:833
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• The answer NA means that the paper does not include experiments.834

• If the paper includes experiments, a No answer to this question will not be perceived835

well by the reviewers: Making the paper reproducible is important, regardless of836

whether the code and data are provided or not.837

• If the contribution is a dataset and/or model, the authors should describe the steps taken838

to make their results reproducible or verifiable.839

• Depending on the contribution, reproducibility can be accomplished in various ways.840

For example, if the contribution is a novel architecture, describing the architecture fully841

might suffice, or if the contribution is a specific model and empirical evaluation, it may842

be necessary to either make it possible for others to replicate the model with the same843

dataset, or provide access to the model. In general. releasing code and data is often844

one good way to accomplish this, but reproducibility can also be provided via detailed845

instructions for how to replicate the results, access to a hosted model (e.g., in the case846

of a large language model), releasing of a model checkpoint, or other means that are847

appropriate to the research performed.848

• While NeurIPS does not require releasing code, the conference does require all submis-849

sions to provide some reasonable avenue for reproducibility, which may depend on the850

nature of the contribution. For example851

(a) If the contribution is primarily a new algorithm, the paper should make it clear how852

to reproduce that algorithm.853

(b) If the contribution is primarily a new model architecture, the paper should describe854

the architecture clearly and fully.855

(c) If the contribution is a new model (e.g., a large language model), then there should856

either be a way to access this model for reproducing the results or a way to reproduce857

the model (e.g., with an open-source dataset or instructions for how to construct858

the dataset).859

(d) We recognize that reproducibility may be tricky in some cases, in which case860

authors are welcome to describe the particular way they provide for reproducibility.861

In the case of closed-source models, it may be that access to the model is limited in862

some way (e.g., to registered users), but it should be possible for other researchers863

to have some path to reproducing or verifying the results.864

5. Open access to data and code865

Question: Does the paper provide open access to the data and code, with sufficient instruc-866

tions to faithfully reproduce the main experimental results, as described in supplemental867

material?868

Answer:[Yes]869

Justification: Paper provides training and implementations details and provides module870

pseudocode. Full source code will be made publicly available upon acceptance.871

Guidelines:872

• The answer NA means that paper does not include experiments requiring code.873

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/874

public/guides/CodeSubmissionPolicy) for more details.875

• While we encourage the release of code and data, we understand that this might not be876

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not877

including code, unless this is central to the contribution (e.g., for a new open-source878

benchmark).879

• The instructions should contain the exact command and environment needed to run to880

reproduce the results. See the NeurIPS code and data submission guidelines (https:881

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.882

• The authors should provide instructions on data access and preparation, including how883

to access the raw data, preprocessed data, intermediate data, and generated data, etc.884

• The authors should provide scripts to reproduce all experimental results for the new885

proposed method and baselines. If only a subset of experiments are reproducible, they886

should state which ones are omitted from the script and why.887
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• At submission time, to preserve anonymity, the authors should release anonymized888

versions (if applicable).889

• Providing as much information as possible in supplemental material (appended to the890

paper) is recommended, but including URLs to data and code is permitted.891

6. Experimental Setting/Details892

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-893

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the894

results?895

Answer: [Yes]896

Justification: Appendix provides details on hyperparameters and dataset specific settings for897

all experiments.898

Guidelines:899

• The answer NA means that the paper does not include experiments.900

• The experimental setting should be presented in the core of the paper to a level of detail901

that is necessary to appreciate the results and make sense of them.902

• The full details can be provided either with the code, in appendix, or as supplemental903

material.904

7. Experiment Statistical Significance905

Question: Does the paper report error bars suitably and correctly defined or other appropriate906

information about the statistical significance of the experiments?907

Answer: [Yes]908

Justification: Appendix mentions that results were averaged over atleast 3 seeds for primary909

experiments.910

Guidelines:911

• The answer NA means that the paper does not include experiments.912

• The authors should answer "Yes" if the results are accompanied by error bars, confi-913

dence intervals, or statistical significance tests, at least for the experiments that support914

the main claims of the paper.915

• The factors of variability that the error bars are capturing should be clearly stated (for916

example, train/test split, initialization, random drawing of some parameter, or overall917

run with given experimental conditions).918

• The method for calculating the error bars should be explained (closed form formula,919

call to a library function, bootstrap, etc.)920

• The assumptions made should be given (e.g., Normally distributed errors).921

• It should be clear whether the error bar is the standard deviation or the standard error922

of the mean.923

• It is OK to report 1-sigma error bars, but one should state it. The authors should924

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis925

of Normality of errors is not verified.926

• For asymmetric distributions, the authors should be careful not to show in tables or927

figures symmetric error bars that would yield results that are out of range (e.g. negative928

error rates).929

• If error bars are reported in tables or plots, The authors should explain in the text how930

they were calculated and reference the corresponding figures or tables in the text.931

8. Experiments Compute Resources932

Question: For each experiment, does the paper provide sufficient information on the com-933

puter resources (type of compute workers, memory, time of execution) needed to reproduce934

the experiments?935

Answer: [Yes]936

Justification: Appendix mentions the type of GPU and its memory for all experiments along937

with batch size of experiments.938
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Guidelines:939

• The answer NA means that the paper does not include experiments.940

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,941

or cloud provider, including relevant memory and storage.942

• The paper should provide the amount of compute required for each of the individual943

experimental runs as well as estimate the total compute.944

• The paper should disclose whether the full research project required more compute945

than the experiments reported in the paper (e.g., preliminary or failed experiments that946

didn’t make it into the paper).947

9. Code Of Ethics948

Question: Does the research conducted in the paper conform, in every respect, with the949

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?950

Answer: [Yes]951

Justification: Authors reviewed code of ethics during submission.952

Guidelines:953

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.954

• If the authors answer No, they should explain the special circumstances that require a955

deviation from the Code of Ethics.956

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-957

eration due to laws or regulations in their jurisdiction).958

10. Broader Impacts959

Question: Does the paper discuss both potential positive societal impacts and negative960

societal impacts of the work performed?961

Answer:[Yes]962

Justification: Paper mentions potential negative impacts of work in appendix.963

Guidelines:964

• The answer NA means that there is no societal impact of the work performed.965

• If the authors answer NA or No, they should explain why their work has no societal966

impact or why the paper does not address societal impact.967

• Examples of negative societal impacts include potential malicious or unintended uses968

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations969

(e.g., deployment of technologies that could make decisions that unfairly impact specific970

groups), privacy considerations, and security considerations.971

• The conference expects that many papers will be foundational research and not tied972

to particular applications, let alone deployments. However, if there is a direct path to973

any negative applications, the authors should point it out. For example, it is legitimate974

to point out that an improvement in the quality of generative models could be used to975

generate deepfakes for disinformation. On the other hand, it is not needed to point out976

that a generic algorithm for optimizing neural networks could enable people to train977

models that generate Deepfakes faster.978

• The authors should consider possible harms that could arise when the technology is979

being used as intended and functioning correctly, harms that could arise when the980

technology is being used as intended but gives incorrect results, and harms following981

from (intentional or unintentional) misuse of the technology.982

• If there are negative societal impacts, the authors could also discuss possible mitigation983

strategies (e.g., gated release of models, providing defenses in addition to attacks,984

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from985

feedback over time, improving the efficiency and accessibility of ML).986

11. Safeguards987

Question: Does the paper describe safeguards that have been put in place for responsible988

release of data or models that have a high risk for misuse (e.g., pretrained language models,989

image generators, or scraped datasets)?990
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Answer: answerNA991

Justification: Paper does not explicitly pose such risks; however in limitations and potential992

negative impact this is mentioned.993

Guidelines:994

• The answer NA means that the paper poses no such risks.995

• Released models that have a high risk for misuse or dual-use should be released with996

necessary safeguards to allow for controlled use of the model, for example by requiring997

that users adhere to usage guidelines or restrictions to access the model or implementing998

safety filters.999

• Datasets that have been scraped from the Internet could pose safety risks. The authors1000

should describe how they avoided releasing unsafe images.1001

• We recognize that providing effective safeguards is challenging, and many papers do1002

not require this, but we encourage authors to take this into account and make a best1003

faith effort.1004

12. Licenses for existing assets1005

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1006

the paper, properly credited and are the license and terms of use explicitly mentioned and1007

properly respected?1008

Answer: [Yes]1009

Justification: Yes, all coding libraries and datasets are properly cited and credited.1010

Guidelines:1011

• The answer NA means that the paper does not use existing assets.1012

• The authors should cite the original paper that produced the code package or dataset.1013

• The authors should state which version of the asset is used and, if possible, include a1014

URL.1015

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1016

• For scraped data from a particular source (e.g., website), the copyright and terms of1017

service of that source should be provided.1018

• If assets are released, the license, copyright information, and terms of use in the1019

package should be provided. For popular datasets, paperswithcode.com/datasets1020

has curated licenses for some datasets. Their licensing guide can help determine the1021

license of a dataset.1022

• For existing datasets that are re-packaged, both the original license and the license of1023

the derived asset (if it has changed) should be provided.1024

• If this information is not available online, the authors are encouraged to reach out to1025

the asset’s creators.1026

13. New Assets1027

Question: Are new assets introduced in the paper well documented and is the documentation1028

provided alongside the assets?1029

Answer: [NA]1030

Justification:No new asset1031

Guidelines:1032

• The answer NA means that the paper does not release new assets.1033

• Researchers should communicate the details of the dataset/code/model as part of their1034

submissions via structured templates. This includes details about training, license,1035

limitations, etc.1036

• The paper should discuss whether and how consent was obtained from people whose1037

asset is used.1038

• At submission time, remember to anonymize your assets (if applicable). You can either1039

create an anonymized URL or include an anonymized zip file.1040

14. Crowdsourcing and Research with Human Subjects1041
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Question: For crowdsourcing experiments and research with human subjects, does the paper1042

include the full text of instructions given to participants and screenshots, if applicable, as1043

well as details about compensation (if any)?1044

Answer: [NA]1045

Justification: No new asset1046

Guidelines:1047

• The answer NA means that the paper does not involve crowdsourcing nor research with1048

human subjects.1049

• Including this information in the supplemental material is fine, but if the main contribu-1050

tion of the paper involves human subjects, then as much detail as possible should be1051

included in the main paper.1052

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1053

or other labor should be paid at least the minimum wage in the country of the data1054

collector.1055

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1056

Subjects1057

Question: Does the paper describe potential risks incurred by study participants, whether1058

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1059

approvals (or an equivalent approval/review based on the requirements of your country or1060

institution) were obtained?1061

Answer: [NA]1062

Justification: No new asset1063

Guidelines:1064

• The answer NA means that the paper does not involve crowdsourcing nor research with1065

human subjects.1066

• Depending on the country in which research is conducted, IRB approval (or equivalent)1067

may be required for any human subjects research. If you obtained IRB approval, you1068

should clearly state this in the paper.1069

• We recognize that the procedures for this may vary significantly between institutions1070

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1071

guidelines for their institution.1072

• For initial submissions, do not include any information that would break anonymity (if1073

applicable), such as the institution conducting the review.1074
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Reasoning Computation Steps

Pa
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ra

tio
ns

Are there any objects that
have both shape and size in
common with the object that
is found closest to the front?
(GT: Yes; Pred: Yes)

Reasoning Computation Steps

Figure 8: Top: original image and question; middle: language attentions across parallel operations
(clubbed together; op_k represents parallel operation k) and computation steps. Bottom: Visual
attentions across parallel ops and computation steps. Here, IPRM correctly utilizes parallel and
iterative compute to locate the correct candidate object for prediction (to which all operations attend
in last step).
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ns

What shape is the object
closest to the gray object with
the maximum occuring shape? 
Pred: cube GT: cube

Reasoning Computation Steps

Figure 9: In this example, IPRM predicts the correct answer and its visual attention trace provides
evidence of correct intermediate reasoning. In penultimate reasoning step, IPRM correctly localizes
the gray object with maximum occuring shape (cylinder) and in the final step, the parallel operations
attend to both the cyan cube and the brown cylinder closest to previously identified gray cylinder.
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Are the two objects that are
of a primary color, but not
red, of the same shape?
Pred: no GT: yes

Reasoning Computation Steps

Figure 10: Example where IPRM outputs incorrect answer and the intermediate reasoning appears
faulty possibly due to lack of understanding what a “primary color is". The pair of blue (a primary
color) cubes in this case should have been identified but are not visually attended in any of the
operations across reasoning steps).
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What shape is the object left of
the blue small object with the
maximum occuring shape? 
Pred: sphere GT: sphere

Reasoning Computation Steps

Figure 11: Example wherein IPRM produces correct answer but its visual attention trace suggests
intermediate reasoning may be imprecise. The maximum occuring shape is cube; however both the
blue small cylinder and blue small cube appear to be attended in the penultimate step as the “blue
small object with max occuring shape" making the reasoning and prediction less reliable.
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1 def iprm_forward(vis_tokens, #B×Nv×Dm
2 lang_tokens, #B×Nl×Dm
3 lang_summary_rep, #B×Dm
4 num_parallel_ops=6,
5 num_iterative_steps=9,
6 mem_window_len=2):
7 mem_op_states = []
8 mem_res_states = []
9 lang_atts = []

10 vis_atts = []
11

12 #0. Initialize memory
13 b, d = vis_tokens.size(O), vis_tokens.size(-1)
14 mem_op_state, mem_res_state = _init_mem_state(num_parallel_ops, b,d)
15 mem_op_states.append(mem_op_state)
16 mem_res_states.append(mem_res_state)
17 for i in range(num_iterative_steps):
18 #1. Form new set of latent operations from lang. token features
19 new_ops, lang_att = operation_formation(lang_tokens, mem_op_state)
20

21 #2. Execute new operations on vis. input to form new results
22 new_ops_results, vis_att = operation_execution(vis_tokens, new_ops,

mem_res_state)↪→
23

24 #3. Apply operation composition
25 mem_op_state, mem_res_state = operation_composition(new_ops,

new_ops_results, mem_op_states, mem_res_states)↪→
26

27 #4. Maintain memory states within lookback window
28 mem_op_states.append(mem_op_state)
29 mem_res_states.append(mem_res_state)
30 mem_op_states = mem_op_states[min(-1, -mem_window_len):]
31 mem_res_states = mem_res_states[min(-1, -mem_window_len):]
32

33 #5. Store lang. and vis. atts for visualization
34 lang_atts.append(lang_att)
35 vis_atts.append(vis_att)
36

37 #6. 'Pool' final result
38 final_result = pool_final_result(mem_res_state, mem_op_state,

lang_summary_rep)↪→
39

40 return final_result, lang_atts, vis_atts

Figure 12: IPRM pseudocode (1/3)
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1 #Below, "Lin" refers to a linear layer
2 #and `"MLP" refers to a 2-layer multi-layer-perceptron layer
3 def operation_formation(lang_tokens, #B×Nl×Dm
4 prev_op_state #B×Nop×Dm (Nop=num parallel ops)
5 ):
6 #1. Form new op "query" based on prior op state
7 op_q = MLP_l(prev_op_state) #paper eq. 4
8

9 #2. Use lang_token_feats as attn "key" and "value" (paper eq. 5)
10 lang_k = lang_tokens
11 lang_v = lang_tokens
12

13 #3. Retrieve new latent ops from lang. rep through attention
14 latent_ops, lang_attn = mod_attn(op_q, lang_k, lang_v,
15 lang_attn_proj) #paper eq.6; L194
16

17 return latent_ops, lang_attn
18

19 def operation_execution(vis_tokens, #B×Nv×Dm
20 new_ops, #B×Nop×Dm
21 prev_res_state): #B×Nop×Dm
22 #1. Form feature modulation weights (paper eq.7)
23 s_v = concat([Lin_op(new_ops), Lin_res(prev_res_state)]) #concat across feat.

axis↪→
24 s_v = Lin_s(s_v)
25

26 #2. Form visual attention "key" (paper eqs. 8 and 9)
27 vis_red_rep = Lin_v1(vis_tokens)
28 mod_vis = s_v * vis_red_rep
29 Nop = mod_vis.size(1)
30 vis_k = MLP_v(concat([mod_vis, vis_red_rep])) #concat across feat. axis
31

32 #3. Form visual attention "query" and "value" (paper eq. 10)
33 vis_q = Lin_op_q(new_ops)
34 vis_v = Lin_v2(vis_tokens)
35

36 #4. Obtain new latent "results" through vis attention (paper eq.11)
37 latent_results, vis_attn = mod_attn(vis_q, vis_k, vis_v, vis_att_proj)
38

39 return latent_results, vis_attn
40

41 def mod_attn(q, k, v, att_proj_layer, attn_mask):
42 qk_mult = q*k #element-wise product
43 attn_wt = att_proj_layer(qk_mult) #linear projection (paper L194)
44 attn_wt = softmax(attn_wt + (attn_mask * -1e30))
45 out = (attn_wt * v).sum() #sum across feature axis
46 return out, attn_wt

Figure 13: IPRM pseudocode (2/3)
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1 def operation_composition(new_ops, #B×Nop×Dm
2 new_res, #B×Nop×Dm
3 mem_op_states, #list of W elements: B×Nop×Dm
4 mem_res_states #list of W elements: B×Nop×Dm
5 ):
6 #1. Integrate new-ops and results into memory (paper eq. 12 and 13)
7 inter_op_state = Lin_op_u(new_ops) + Lin_op_h(mem_op_states[-1])
8 inter_res_state= Lin_res_u(new_res) + Lin_res_h(mem_res_states[-1])
9

10 #2. Concat operation and result states over memory lookback window
11 op_states_windowed = concat([inter_op_state, mem_op_states])
12 res_states_windowed = concat([inter_res_state, mem_res_states])
13

14 #3. Form inter-operation queries and keys (paper eq. 14)
15 op_queries = Lin_op_q(inter_op_state)
16 op_keys = Lin_op_k(op_states_windowed)
17

18 #4. Form inter-operation op values and res values (paper eq. 15-16)
19 op_values = Lin_op_v(op_states_windowed)
20 res_values = Lin_res_v(res_states_windowed)
21

22 #5. Compute inter-operation attention (paper eq. 17)
23 attn_mask = identity_matrix(op_keys.size(1))[:op_queries.size(1)]
24 new_op_state, op_attn_wt = mod_attn(op_queries, op_keys, op_values,

op_attn_proj, attn_mask)↪→
25

26 #6. Obtain new operation and result states (paper eq. 18-19)
27 new_op_state = new_op_state + Lin_op_u2(inter_op_state)
28 new_res_state = op_attn_wt*new_res_state + Lin_res_v2(inter_res_state)
29

30 return new_op_state, new_res_state
31

32 def _init_mem_state(num_parallel_ops, b):
33 #slice specified num parallel ops from initialized params ∼ N (0, 1)
34 op_init_state = op_init_param[:num_parallel_ops]
35 res_init_state= res_init_param[:num_parallel_ops]
36 #broadcast batch-wise to get B×N_op×Dm
37 return op_init_state.repeat(b,1,1), res_init_state.repeat(b,1,1)
38

39 def pool_final_result(res_state, op_state, lang_summary_rep):
40 pool_q = Lin_pq(lang_summary_rep)
41 pool_k = Lin_pk(op_state)
42 return mod_attn(pool_q, pool_k, res_state)

Figure 14: IPRM pseudocode (3/3)
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