A Related Works

In the following, we relate our work to recent lines of RLHF research on both theory and practice
sides. We also review related works on reward hacking and overoptimization in RLHF.

RLHEF: algorithm design. The technique of RLHF [12, 87, 42, 6, 18, 55] has recently demonstrated
its great importance in building the state-of-the-art LLMs, including ChatGPT [1], Gemini [61],
Claude [2]. In the RLHF pipeline, the LLM is fine-tuned towards maximizing a learned reward
model for better alignment [52, 57] with human preference using RL algorithms such as Proximal
Policy Optimization (PPO; [51]). Meanwhile, PPO-style algorithm is also known for its instability,
sample-inefficiency, and especially, a high demand for proper hyperparameter tuning [22]. This thus
casts prohibitive computational cost to make the most effectiveness of PPO-based RLHF methods to
align LLMs, especially for the open-source community.

Given that, further research on RLHF has explored various alternatives to PPO-based methods, with
the most popular approach being the direct preference optimization method [82, 46], which skips the
reward learning phase and directly optimizes the LLM to align it with the human preference. Our
practical implementation (RPO) also harnesses the wisdom of reward-LLM equivalence to avoid
explicit reward learning followed by PPO training.

Besides the original DPO algorithm [46], ever since it popularizing the direct preference learning style
method, variants of the direct preference learning approach are proposed, including but not limited to
[34,5,71,59, 28,74, 44, 26, 50, 32, 80, 58, 68, 30]. Each of them aims to address further challenges
of direct preference learning from varying perspectives. Specifically, the algorithm proposed by
[44, 26] share similar algorithmic components as RPO proposed in this work. Both work consider
SFT style regularization during preference optimization. However, theoretical understanding of how
SFT loss can help alignment remains unknown. In contrast, we provide theoretical justifications
to the SFT loss as an implicit adversarial regularizer that provably mitigates overoptimization in
preference learning.

RLHF: theoretical investigation. Initiated from the literature of dueling bandits and dueling RL
[76, 7, 43], recent success of RLHF in fine-tuning LLMs also motivates a long line of research
to investigate the theoretical foundations of RLHF under different settings [11, 85, 78, 79, 67, 31,
71, 74, 19, 84], aiming to propose provably sample-efficient algorithms to learn a human-reward-
maximizing policy from human preference signals. Our theoretical study of RLHF falls into the
paradigm of offline learning from a pre-collected preference dataset, and is mostly related to the work
of [85, 78, 31, 71, 74]. In this setup, the main challenge is to address the overoptimization issues due
to human reward uncertainty and distributional shifts when only a fixed dataset is available. In the
sequel, we compare our work with them in more detail.

Existing theoretical work on provably sample-efficient offline RLHF typically suffers from two
drawbacks: they are either restricted to the linear function approximations setting [85, 71] which is
far from the practical situations, or are generally unable to be implemented in the LLM experiments.
Typically, to encompass the pessimistic principle in the face of uncertainty, the existing literature
proposes to return the optimal policy against either an estimated reward model plus a structure-aware
reward uncertainty penalty [71] or the most pessimistic reward model inside a confidence region
[85, 78]. Both of these two types of method involve intractable components for implementation
and needs for additional algorithmic design to approximate the theoretical algorithm in practice. In
contrast, our theory works in the context of general function approximations while being friendly
to be implemented. Finally, we remark that, while our study focuses on the standard Bradley-Terry
model of human preference with general reward function approximations, the work of [74] further
considers a general human preference model. But it remains unknown how their algorithms can be
efficiently implemented in practice. It serves as an interesting direction to extend our technique to
RLHF with general reward model and device new practical algorithms.

Finally, we mention that the algorithm design of RPO is also related to the “pessimism” principle in
the standard offline RL literature. It proposes to maintain a pessimistic estimate of the policy values
or constrain the policy not to take unseen actions in the data to handle the challenge of the insufficient
coverage of the dataset, e.g., [29, 65, 69, 70, 47, 75, 72, 36, 54, 77, 39, 48, 53, 8, 38, 33, 24]. In
contrast, we consider the offline RLHF problem and the techniques to obtain the objective of the
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RPO algorithm (see Section 4) along with its sample complexity analysis are new and different from
these works.

Reward hacking and overoptimization in RLHF for LLM. As is discussed in the introduction,
the challenge of reward hacking or overoptimization may prevent the successful alignment of LLMs,
degenerating the performance of an LLM because of maximizing an imperfect, overfitted, and
misgeneralized proxy reward learned from the finite data [40, 62, 25, 10]. Efforts have been made
to mitigate this fundamental issue through the perspective of theory, e.g., [85, 71, 86], and practice,
e.g., [15, 21,41, 81, 49, 56]. Our approach starts from the theoretical insights of handling inherent
uncertainty in learning human preference from finite data, while being surprisingly easy to implement.

B Limitations and Future Works

One limitation of the current work is that we focus on the setting of offline RLHF where only a fixed
preference dataset is available. Recent RLHF research has shown great potential of using iterative
methods for LLM alignment with multiple rounds of preference data collection and tuning [71, 58].

Future works include extending our idea of theoretical algorithm design and analysis to the iterative
RLHF setup where further preference data can be collected. Also, since our practical algorithm RPO
is a plug-in module that effectively mitigates overoptimization and improves alignment performance,
it serves as an exciting direction to combine it with explorative preference data collecting mechanism
in iterative RLHF to further boost the performance of LLM alignment.

C Further Discussions

Discussions on Algorithm 1 and Theorem 5.3. 'We compare our theory with [71] and [78].

Remark C.1 (Comparison with [71]). Another theoretical work on RLHF [71] explicitly models the
KL-regularization between the target policy and the reference policy in the learning objective, referred
to as the KL-regularized contextual bandit. This means that their metric becomes the KL-regularized
expected reward. In contrast, here we put the KL-regularization as a component of our algorithm
design, but we still keep the metric as the expected reward (2.2). Therefore our theory in Section 5.1
directly reveals how the learned policy performs in terms of the expected reward compared to any
given target policy (which can be a stochastic policy).

Remark C.2 (Comparison with [78]). We remark that in the work of [78], they also mentioned a
maximin object similar to (3.2) for offline preference-based RL as a complementary to their theoretical
algorithm. However, the sample complexity of the maximin-style algorithm they presented is unknown,
while we provide finite sample convergence result for Algorithm 1 in Section 5. Furthermore, our
objective (3.2) features another KL-regularization term, which is essential for the proposal of our
new practical algorithm design for aligning LLM in Section 4.

Discussions on the partial coverage assumption (Assumption 5.2). A sufficient condition to
make this partial coverage condition (Assumption 5.2) hold is that the distribution of the offline
dataset, which is y1p, can well cover the joint distribution of (a', a®) ~ (m, 7°2%¢). Here to discuss

focus on 7€ = gehosen a4 e adopted in the experiment part.

First, we clarify that the offline dataset distribution pp is not simply (a', a®) ~ (unchosen gchosen)
since according to our definition (see Section 2) whether a' or a is chosen is random and is
determined by y € 0, 1 obeying the BT model. Thus, (a',a®) ~ up can be interpreted as a mixture
of (qunchosen gchoseny apq (gehosen gunchosen) Thig mixture probability would not be too small as
long as the quality of (a!, a") does not vary too much, i.e., both of them are possible to be chosen,
which is the case in practice. As a result, in the offline data distribution (al, aO) ~ up, both a' and
a® partly comes from the chosen distribution 7Posen,

Then in order for jip to cover the joint distribution of (a!,a®) ~ (m, 7bas¢)

, it suffices to argue that
wehosen can cover the target policy 7, which is then reduced back to the traditional coverage condition.
Thus our assumption essentially requires that 7™ well covers and only needs to cover the target
policy 7. This coincides with the spirit of the minimal data assumption in offline RL theory, i.e., the

so-called partial coverage condition.
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On the relationship between observed chosen probability and reward overoptimization. First,
we note that the actions and their chosen probabilities can be interpreted as a proxy of analyzing the un-
derlying (estimated) reward model 7 due to the representation 7(a|z) o 7' (a|z) exp(B~17(z, a)).
Analyzing the (log) probabilities of the actions can be utilized to detect the mitigation of over-
optimization, because according to the representation, an overestimated reward of a poor action
would result in a higher probability of choosing this action, and would also cause a decay in the
probability of choosing other better actions (since the probabilities are normalized to 1).

To further showcase the ability of RPO to address overoptimization (through the lense of probability),
consider the following theoretical example with only one state and three actions [73] where we can
track everything clearly. It has three actions a, b, ¢ with R*(a) = 1, R*(b) = 0.5, R*(c) = 0. The
reference policy 77! (a) = 7**f(b) = 0.4, 7! (¢) = 0.1, and the dataset consists of one data point
D = (a,b,1) (meaning action «a is preferred in the data). Then an ideally solved DPO objective
would be Tppo as long as 7°FC(b) = 0, and the Value of 7PPO(q (})can be arbitrarily chosen in [0, 1].
Thus a possible solution to DPO would be 7°F°(a) = 0.5, 7P = 0, and by the normalizing
condition 7P (c) = 0.5, which is undesirable since the action ¢ has reward R*(¢) = 0. In contrast,
solving the RPO objective would additionally require the maximization of 7rpo (a) due to the SFT
regularization term, and thus the solution is shifted towards mrpo(a) = 1, Trpo(b) = mrpo(c) = 0,
which is better than the DPO policy. Thus, RPO is able to prevent overoptimization towards poor
actions that are less covered by the dataset (action c here), therefore resulting in a better policy.

About the relationships and distinctions between PTX loss in [60] and the SFT loss of RPO.
The original PTX loss is an imitation loss calculated on the pretraining data. In contrast, the SFT
loss in the RPO objective is an imitation loss calculated on the RLHF dataset. In more specific,
our experiments use this SFT loss to imitate the chosen responses in the RLHF dataset. Thus the
relationship is that they are both imitation loss which aims to mimic certain data distribution. The
distinction is that they are calculated on different data sources. The SFT loss in the RPO objective
naturally comes from our theoretical algorithm and provably serves as an important regularization
term to mitigate overoptimization in offline RLHF.

About the computational complexity of the SFT loss gradient. According to the paragraph
Practical implementation in Section 6, RPO adds an additional SFT loss (the log probability of the
chosen labels in the preference dataset) on the original DPO loss, where we highlight that the SFT
loss is actually an intermediate quantity in the calculation of the DPO loss. Hence, our proposed
method does not incur any additional computation overhead compared with the vanilla DPO.
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D Proofs for Sample Complexity Analysis

D.1 Proof of Theorem 5.3
Proof of Theorem 5.3. By definition, the suboptimality gap of 7 w.r.t. 7 is decomposed as following,
Gap™ (7)

= Eundo ar(la) [ (@ @)] = Bando ani(la) [ (@, )]

= Emwdg,alwﬂ(-\z),aONﬂref(-\z) [T*(£C7 al) - 7'*("177 aO) - B : KL(W(|x)||7Tref(|$))j|

— 7' min {77 Eomdo,al ni(a), [T(fﬂ,al) —r(z,a”) = - KL(%(‘|95)||7TrEf('|CU))] + ED(T)}

reER
¥~ (| 2)

! min {n Byt [P @) = 7(2,0%) = B - KLECJ) [0 ()| + £D<r>}

reER
H.ONﬂbase(<|I)

- ]Ewwdo,a1~ﬁ(~|:1:),a0~7rbase(»\x) |:7“*(.’E, al) - ’I"*(J?, aO) - 6 : KL(%(|x)”7Tr8f(‘x)):|
+ 8- Epnu, {KL(W(-|$)||7Tref(-|x)) - KL(%(.\Q;)Hﬂref(.m)}
:= Term (A) + Term (B) + Term (C), D.1)

where in the above Term (A), Term (B), and Term (C) are abbreviations for

Term (A)
= Erwdg,alwﬂ(-\z),aowﬂbaﬁe(-\m) [T*(l', al) - 7’*({17, aO) - B : KL(W(|x)||7Tref(|l.))i|

" min {n Byt [P 01) = 7(,0) = B - KLECJ) [ ()| + cw)} ,

reER
a®~mb25 (| 2)

and
Term (B)
=y min {n otz [r0") — (%) = B KLGEC)I ()] + cD<r>}
P (. |2)
Byt gttt 1 (@,0) = 77 (2, 0%) = B - KL(RC|o) 77 (12))]
and

Term (€)= B - By [KL ((-Jo) 770 () = KL(F(Ja)| 7" () |
In the following, we analyze Term (A) and Term (B) respectively.
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Upper bound Term (A). Notice that by the optimality of our choice of policy 7 in (3.2), we have
Term (A)
= Byt mon( ) a0 e (o) |17 (@,01) = 17(2,0%) = B KL(n(2) |7 ()| ©2)

" min {n Byt [P 0) = 7(2,0%) = B - KL(ECJ2) [0 ()| + cw)}

reER
a(JNﬂ,_base(Alx)

< Ea:wdo,alNﬂ'(-\w),aowﬂref(-\a:) |:’I"*(J), al) - T*(JJ,CLO) - 5 : KL(F(|x)||7TrCf(|x)):|

—y" - min {77 Byt on oy, [P 01) — r(,0) = B - KL(a(Jo) [ ()| + zp<r>}

reR ase
a®~rPe (| 2)

= r7[1€a7%( {]E$~d0,(llNﬂ'(-lm),aONﬂ'base(*|1’) [(r*(w,al) — T*(.’L', ao)) — (7’(1‘7 al) — r(x,ao))} — 77_1 . E'D(T‘)},

where in the inequality we apply the optimality of the choice of policy 7 in (3.2).

Upper bound Term (B). For this term, we directly consider the following bound,

Term (B)

= 77_1 -min q 7 - Ezwdo,alwﬁﬂz)7 |:T(£L', al) - 7“(:177 aO) -B- KL(%(|$)||Fref(|x)):| + £D(T)
reR a®~r™f (| z)

Byt )ttt [ (2, 01) = 17 (2,0%) = B KL(R (o) |57 (1))

< Emr\zdo,alw%(-\m),aONTrb'“e(-\x) [T*('Tv a‘l) - T*(a:7 aO) - /8 : KL(%(|x)||7Tref(|x)):| + 7771 : LD(T*)

- ]Ezfvdo,a1~ﬁ(~|w),a0~7rbﬂse('\w) |:’I”*(l‘7 0’1) - T*(.T, a()) - B KL(%(“I>H7TrEf(|x))i|
=n"" Lp(r*), (D.3)

where in the inequality we apply the fact that r* € 'R by Assumption 5.1.

Combining Term (A), Term (B), and Term (C). Now by (D.1), (D.2), and (D.3), we have that
Gapj(7) = Term (A) + Term (B) + Term (C) (D.4)

< 13162% {Ez’\“od(%a:i::él'lf))y [(r*(m,al) —r*(z, ao)) — (T(x, a') — r(aaao))} +n L. (ﬁp(r*) — ED(T))}
+ 8 Eynay [KL(r(|0)]|7 (-2)) = KL(F(Ja) |7 (|2)]

In the following, we upper bound the right hand side of (D.4) via relating the MLE loss difference
term to the reward difference term through a careful analysis of the preference model. On the one
hand, we invoke Lemma D.1 to give an upper bound of the difference of the MLE loss as following,
with probability at least 1 — & over random samples and ¢ = (6 - (1 + e’?) - N)~1, for any reward
model r € R, it holds that

Lp(r*) — Lp(r)
< <2 Bt a0)pn () | Ditctinger (Pre (12, 0", )| |Pr (o, ! a0)
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+ — -log 5

; (NE(R, I- ||oc)> 7

where we recall that we use the subscript r in PP, to emphasize the dependence of the probabilistic
model on the reward model. Here NV (R, || - ||) denotes the e-covering number of the reward model
class and R is the upper bound on the reward functionss (Assumption 5.1). Now to facilitate the
calculation, we lower bound the Hellinger distance by total variation (TV) distance as

DIQ{ellinger (PT* (|$7 alv a0)||PT'("x> a1> a0)) 2 D”Q[‘V (PT* (|$, ala a0)||}P’,.(~|x, a17 a'o))v
By the expression of the probability model P,., we can further write the TV distance above as

Dy (P (-|z,a",a") | P (|2, a*, a))

= o @at) = () — o (r(rat) — r(r.a))|
2o, - r(,0%) - o{r(,0%) = r(z,ah)]

= ‘O’(T*(l', a') —r*(z,a%)) — o(r(z,a') — r(z,a%)|, (D.5)

where in the second equality we use the fact that 0(—z) = 1 — o(z). Now by Lemma D.2 and the
condition that (x, a) € [0, R] for any (z,a,7) € X x A X R (Assumption 5.1), we know that

‘a(r*(m,al) —r*(z,a")) —o(r(z,a') — r(amao))’

(r*(z,a') — r*(a, ao)) — (r(z,a") - r(x,ao))

where k = 1/(1 + exp(R))2. As a result, the difference of the MLE loss is upper bounded by
Lp(r*) — Lp(r)

2
< =26 E(al a0)mpn () U (r*(z,a') — r*(z,a°)) — (r(z,a") — r(x,ao))‘ }

3 Ne(R, || - lloo)
+ 5 “log <5> . (D.6)

> K-

)

On the other hand, the reward difference term in (D.4), which is evaluated on actions from 7 and wP2se,
can be related to the reward difference evaluated on the data distribution pp via Assumption 5.2, i.e.,

Ew,\,d07alNﬂ-(,|$)7a0~ﬂ-base(,|z) [(r*(x, al) —r*(x, ao)) — (T($, al) —r(z, ao))} {D.7)

2
S CHD (Rv T, Wbase)\/E(x,al,ao)NuD |:‘ (7”*(1‘, al) - T’*(l’, a())) - (T’(IC, al) - T(xv a()))’ :| .

Finally, combining (D.6), (D.7), and (D.4), denoting

2
Ar = \/E(I,al,ao)wup |:‘ (T*(SC, al) - ’I"*(.’L‘, aO)) - (’I"(ZC, al) - T(SL‘, ao))‘ :| ’
we have that

- - 3 Ne(Ro - Hloo)
(7)) < o, P LA, — 2 2 AL 2 el T oo/
Gap™(7) < %%({CHD (Rym,m°%¢) - A — 207 'K AT} + N log ( 5

+ B By [KL( () |7 (1) — KL(R([2)]| 7 ()]
2

ConRema™)'n 5 (R )
852 77N 1)

+ 8 Eanay [KL(x(2) 7 (2)) |,

<
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where in the second inequality we use that fact that az — bz? < a?/(4b) for any 2z € R and that
KL-divergence is non-negative. Consequently, with the choice of

7722\/6.\/IOg(NE(R]d|'||oo)/5)j g =

1 1
VN T 0 ea(R)?
we conclude that with probability at least 1 — § and e = (6 - (1 + ) - )71,
Gap™(7)
V6(1+ exp(R)) ((qm (R;m, m25))% £ 1) 1 4+ 4B, g, [KL(W(.|x)||wref(.\x))}
4N ’

where we denote ¢ = \/log (NV(R, | - [|ec)/d) withe = (6 (1 +eft) - N)~L. This finishes the proof
of Theorem 5.3. O

N———

<

D.2 Technical Lemmas

Lemma D.1 (Uniform concentration). Consider the MLE loss (3.1) and define the approximation
errorase = (6-(1+eft)-N)~1 where R is the upper bound on the reward functions (Assumption 5.2).
Suppose that the reward model class R has a finite e-covering number N:(R, || - ||s) < co. Then
Sforany § < 1/e it holds with probability at least 1 — 0 that

,CD(’I“*) - ﬁ'D(T)
< -2 E(w,al,ao)wqu(qw) |:D12-Iellinger (PT‘* (|xa ala CLO)H]P)T('M‘, 0,1, aO))i|

3 Ne(R [ - lloo)
+ N -log (6) .

Proof of Lemma D.1. For notational simplicity, we use C.(R, || - ||o) to denote an e-cover of the
reward model class R under the || - ||oo-norm. It holds that N (R, || - [|sc) = |Cc(R, || - ||oc)|- First
we invoke Proposition 5.3 of [37] to obtain a uniform concentration over the finite set of e-cover
Ce(R,| - |loo)- Specifically, with probability at least 1 — 4, for any 7 € C.(R, || * |loo)s

Lp(r") = Lo(r)
< -2 E(I,GI,GO)NI—L'D(‘ )|:DHelhnger( ( |‘T a @ )HP ( |x7a1,a0))}

2 Ne(R - llso)
+ 7 o (5> . (D.8)

Now for any reward model 7 € R, we take a 7' € C.(R, || - ||oo) satisfying || — rf||oc < &. We have
ED(T*) — ED(T)
= Lp(r*) = Lp(r") + Lp(r") — Lp(r)
<-2. E(m at,a®)~pup(-,-,) [DHelhnger( ( |(E al @ )H]P)TT( |$ a' CLO)):|

+ % -log (W) + Lp(r') — Lp(r)

< -2 E(Lal’a())wuv(_’,’.) [D%Iellinger (IP,.* (+|, al, CLO)HPT.(.M, al, ao))}

+ % -log <W> +Lo(r") — Lp(r)

+4- ]E(xvalvao)"‘ﬂv('y'y‘) [‘DI%Icllingcr (]PTT (|.’E, ala ao)HPT’(.kEv alv ao))] 5 (D9)

where in the fir inequality we use (D.8) for 7 and in the second inequality we utilize the triangular
inequality for Hellinger distance. Therefore, it remains to upper bound the approximation error
induced by rt. On the one hand, by the definition of Lp in (3.1), we have that

,CD(T’T) — E'D (7’)
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0

_ s (ot al) — s af)
= Zyz log (a(rT(xma}) _ rT(mi7a?))>

N r(zi,ad) — r(z;, al
%221_% log<((<.ZO> ( ‘Q>>,
<z

ri(x;,al) —rt(z,, ai))

Use the inequality that log(z) — 1, we can further upper bound Lp(r!) — Lp(r) b
Lop(r )—ﬁb( )
1 Z r(z;,al) — T(xi,a?)) — a(rf(xi,a}) — rT(xi,a?))
N P J(rf(xi,a}) — rT(xi,a?))
N
1 U(T(.Z‘i, ad) — r(mi,a%)) — U(TT(mi,aQ) —rT(zy, a}))
TN Z(l —Yi) - :

J(Tf(xia a’?) - TT(.TZ-, a’zl))

Now since ||rT — 7||oc < eandr! € [0, R], invoking Lemma D.2, we can derive that

1 Y r(zi,al) —r(z;,a?d)) — TT(aci,a}) —rT(xi,a?)
L’D(rT) — < ¥ Z |( (1)+ 61({)1 )’
| r(x;,al) xz,all)) — (TT(aci,aQ) — rT(a:i,azl))|
Z (14ef)-t
<4t *Tlloo~(1+e By <de-(1+eM). (D.10)

On the other hand, we upper bound the hellinger distance between PP,. and IP,+, for any (, a',a’) €

X xAx A,
Diettinger (Pri (|2, a*, a°) || (], @', a”))
< Drv (]P’TT(~|x, at, a0)||P,.(-|a:,a1,a0))
= |o(r! (2, a) = i (w,0%) = o (r(z,a') = r(z,a")]
< | @,a") = 11 (@,0%) = (r(z,a") = 7(z,a")|
<2 |JrT =7l < 26, (D.11)

where the first inequality uses the fact that DHenge]r < Drv, the equality uses the same argument as

(D.5), and the second inequality applies Lemma D.2. Finally, combining (D.9), (D.10), and (D.11),
we conclude that

Lo(r") = L0(r) < =2+ E(ua,00)mip () | Ditttinges (B (12, ', a0) [P, (2, 0 a”)) |

2 Ne(Ro |- Nloo) R
+N~log (5 +6e-(1+e).

By taking the approximation error ¢ = (6 - (1 + e®) - N)~!, we conclude that for § < e~!, with
probability at least 1 — 4, for any r € R, it holds that

,CD(’I“*) - ﬁD(T‘)
<-2 E(m,al,ao)wup(w,-) {DI%Iellinger (PT* (|JE, al’ aO)HPT('|$7 a17 aO)):|

3 Ne(R [ - lloo)
+ N -log <5> .

This completes the proof of Lemma D.1. O
Lemma D.2 (Sigmoid function). For any real numbers z1, zo € [—R, R), it holds that
K|z — 22| < o(21) — 0(22)| < |21 — 22,

where the constant k = 1/(1 + exp(R))2.
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Proof of Lemma D.2. Since the sigmoid function o (-) is differentiable, we know that for any 2y, zo €
[ R, R], there exists some £(z1, 22) € [—R, R] such that

o(z1) = a(z2) = o' ((21,22)) - (21 — 22).
Notice that 0/(z) = o(z) - (1 — o(z)), we can obtain that
1>0'(&(z1,22)) = 0 (&(21,22)) - (1 - 0(5(21,22)))

_ L . (1 _ 1 )
1+ exp(é(21, 22)) 1+ exp(&(21,22))

1 1

2 1+ exp(R) . (1 1+ exp(R))
1

(1 +exp(R))?’

This completes the proof of Lemma D.2. O

E Proofs for Equivalence between Maximin and Minimax Objectives

E.1 Proof of Theorem 5.6

Proof of Theorem 5.6. Consider denoting an auxiliary policy 7 as

7 € argmax min ¢(m,r). (E.1)
rell TER

By the definition of 7 and 7, the duality gap of (7, ), defined as
Dual(7, 7) := 7) — min (7
ual(7, ) max o(m,7) min o(7,r)

is zero. This is because the following deduction,

Dual(7,7) = (glggf ¢(m,7) — min max $(r, r))

well reR

+ <max min ¢(7,r) — £ré17r21 (T, r))
=0, (E.2)

where in the first equality we apply Lemma E.1 that the minimax objective and the maximin objective
are equivalent, and the last equality applies the definition of 7~ and 7 respectively. Note that we can
rewrite the duality gap as following

Dul(7.7) = (mao(r ) + 659 — (079 ~miger)). €3
Combining (E.2) and (E.3), we can conclude that
max ¢(m,7) = ¢(7,7) = T € argmax (T, ). (E.4)
mell mell

Now comparing what 7 and 7 satisfy in (5.4) and (E.4) respectively, invoking Lemma E.3 that the
maximizer of ¢(-, ) given any » € R is unique on the support of dy, we can conclude that

mi(-|z) = 7(-|z), V€ Supp(do). (E.5)

Therefore, by (E.1) and (E.5), and the fact that ¢(m, r) depends on 7 only through its value on the
support of dy, we can conclude that

T € argmax min ¢(m, ).
rell TER

This finishes the proof of Theorem 5.6. O
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E.2 Auxiliary Lemmas

Lemma E.1 (Equivalence of maximin and minimax objectives). For the policy class Il defined in
(2.3) and the reward model class R satisfying Assumption 5.5, it holds that the maximin objective is
equivalent to the minimax objective, i.e.,

R FR O T) = ngr ol )

Proof of Lemma E.1. The foundation of this result is a minimax theorem given by [23] (Lemma E.2).
In our setting, the policy class II is a nonempty set, and the reward model class R is a nonempty
compact Hausdorff space. Furthermore, by our choice of the policy class II in (2.3), I is a convex set.
Meanwhile, the function ¢ is a concave function of 7 € II since the dependence on 7 is linear terms
plus a negative KL term (concave). Finally, by our assumption, the function ¢ is convex-like on the
reward model class R and is also continuous on R. As a result, all the conditions of Lemma E.2 are
satisfied and the minimax theorem holds in our problem setup, finishing the proof of Lemma E.1. [l

Lemma E.2 (Minimax theorem [23]). Let X be a nonempty set (not necessarily topologized) and
Y be a nonempty compact topological space. Let f : X x Y +— R be lower semicontinuous on ).
Suppose that | is concave-like on X and convex-like on Y, i.e., for any x1,25 € X, a € [0, 1], there
exists x3 € X such that

f(xd,) 2 a-f(x17~)+(1—a)-f(:1c2,-) on),
and for any y1,y2 € Y, B € [0, 1), there exists y3 € Y such that

f(‘,y3) < 5 : f(,yl) + (1 - 6) ! f(va) on Y.
Then the following equation holds,

a i = mi a .
gleggrylggf(z,y) r;gggle;f(x,y)

Lemma E.3 (Unique maximizer of ¢). Consider the function ¢ defined as
¢(7Tv T) =n- ]Ezwdo,a1~7r(<|z),a0~7rba°'e(~\z) T(LE, al) - 71(1.7 aO) - 5 - Dk, (7_‘_(|1,)||7Tref(‘x)):|
+ Lp(r).

Then given any r € R, the maximimzer of ¢(-, ) is unique on the support of dg.

Proof of Lemma E.3. Given any r € R, consider that

max ¢(m, 7)

=n- malg[( {Emwdoyalwﬂ(.m [T(:E, al) - B DxL (77(|33)||7Tref(|$))} }

S
7Tref(,|1-) . exp(ﬁ*l r(z, ))
Jueadmei(a|z) -exp(B~" - r(x,a’)) ’

mell

=17 - max {CT — B Egzmd, [DKL (W(|x)

where
Cr=E; 4, {ﬂ -log (/ dﬂ'rd(a|:17) - exp (B71 -r(z, a)))}
acA
is a constant independent of 7. Therefore, the maximizer of ¢(+, r) on the support of dy must equal to

mt([x) - exp(B~" - r(z,))
drref(a’|z) - exp(B~1 - r(w,a’))’

m () = 5

a’€A

which completes the proof of Lemma E.3. O
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F Additional Details on Experiments

F.1 Training Details

We train the gemma series models with 8 NVIDIA A6000 GPUs and the beta series models with 8
NVIDIA A100 GPUs, where they are all GPT-like models with around 7 billion parameters. It takes
around three hours to train a beta series model and five hours to train a gemma one. Our codebase is
adapted from the Alignment Handbook [63]. By comparing the validation loss on the test split (not
used for later evaluation), we select the hyperparameter 7 of both RPO (beta) and RPO (gemma) to
be 0.005. We list the remaining training configurations in Table 3, which are recommended by the
Alignment Handbook.

Configuration | Beta Series ~ Gemma Series
learning rate 5.0e-7 5.0e-7
learning scheduler type cosine cosine
warmup ratio 1.0 1.0
batch size 128 128
gradient accumulation 2 16
batch size per device 8 1
training epoch 1 2
I3 0.01 0.05
optimizer adamw torch ~ adamw torch
seed 42 42
precision bfloat16 bfloat16

Table 3: Training configurations for beta series and gemma series models in this paper.

F.2 Evaluation Details

GPT-4 evaluation on the test split. We use the following prompts to guide GPT-4 to annotate the
preferences among win, lose, and tie (we denote them by A, B, and C, respectively).

Prompts: Please act as an impartial judge and evaluate the quality of the responses provided
by two Al assistants to the user question displayed below. You should choose the assistant
that follows the user’s instructions and answers the user’s question better. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and
level of detail of their responses. Begin your evaluation by comparing the two responses and
provide a short explanation. Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not allow the length of the
responses to influence your evaluation. Do not favor certain names of the assistants. Be as
objective as possible. After providing your explanation, output your final verdict by strictly
following this format: [[A]] if assistant A is better, [[B]] if assistant B is better, and [[C]] for
a tie. [Instruction] instruction [The Start of Assistant A’s Answer] {answer A} [The End of
Assistant A’s Answer] [The Start of Assistant B’s Answer] {answer B} [The End of Assistant
B’s Answer]

Here, we replace {answer A} and {answer B} with the answers of two models. Since GPT annotation
has shown to prefer the answer in the first position [66], we randomly exchange the positions between
two answers during the evaluation to ensure a fair comparison.

Benchmark evaluation. We use the default configuration for the evaluations on MT-Bench? and
AlpacaEval 2.0°. By default, the annotator of MT-Bench is the latest version of GPT-4. The default
annotator and the competitor model are both GPT-4 (Preview 11/06). We only need to manually
import the proper chat template that formats the training dataset, which are shown as follows.

*https://github.com/1m-sys/FastChat/tree/main/fastchat/11lm_judge
*https://github.com/tatsu-lab/alpaca_eval/tree/main
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Chat Template for Beta Series: <Isysteml|></s><luserl>
{instruction}</s>
<lassistant|>

Chat Template for Gemma Series: <bos> <lim_startl>user
{instruction}<lim_end|>
<lim_start/>assistant

F.3 Additional Results on Experiments

In this section, we provide the additional results to show the performance gain for RPO (beta) in
MT-Bench and RPO (gemma) in AlpacaEval 2.0. We report the pairwise win rates in Tables 4, 5, and
6 to analyze their performance gaps, where all the annotation configurations are the same in Table 2.
Results show that RPO still exceeds DPO in the metric of the pairwise win rates on the benchmarks
for both beta series and gemma series.

win rate (%) | RPO (beta) | Ref. (beta) | DPO (beta)

RPO (beta) 50.00 83.75 57.81
Ref. (beta) 16.25 50.00 21.25
DPO (beta) 78.75 42.19 50.00

Table 4: Pairwise win rates (left vs. right) for beta series models on MT-Benchmark.

win rate (%) | RPO (beta) | Ref. (beta) | DPO (beta)

RPO(beta) 50.00 80.13 52.02
Ref.(beta) 19.87 50.00 20.61
DPO (beta) 47.98 79.39 50.00

Table 5: Pairwise win rates (left vs. right) for gemma series models on AlpacaEval 2.0.

win rate (%) | RPO (beta) | Ref. (beta) | DPO (beta)

RPO (beta) 50.00 64.93 51.33
Ref. (beta) 35.07 50.00 36.44
DPO (beta) 48.67 64.56 50.00

Table 6: Pairwise Length-Control (LC) win rates (left vs. right) for gemma series models on
AlpacaEval 2.0.

G Experiments on Math, Reasoning, and Coding Tasks

G.1 Experimental Details

To provide a more comprehensive analysis of the trained LLM, we introduce more benchmarks on
the math, reasoning, and coding tasks for evaluations. Specifically, we choose the Grade School Math
8K (GSMSK), AI2 Reasoning Challenge (ARC), and Mostly Basic Python Programming (MBPP) to
measure math, reasoning, and coding abilities, respectively. In this section, we focus on the gemma
series for the experiments. We do not use chain-of-thought or few shots in all the benchmarks. We
compare the greedy decoding result (pass @1) on the MBPP benchmark.
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GSM8K ARC MBPP (Pass Q1)

Model Name (%) “Easy (%) Challenge (%) Normal (%) Plus (%)
RPO 49.9 79.1 49.8 54.2 46.3
DPO 453 75.7 50.0 54.2 439
Ref. 45.4 75.0 45.8 50.3 442
zephyr-gemma-7b 47.3 77.6 48.6 54.5 44.7

Table 8: Results on GSM8K, ARC, and MBPP. Here, zephyr-gemma-7b is the officially released
models trained by DPO and Ref. denotes the reference model zephyr-7b-gemma-sft used for our
training. RPO and DPO are trained with the OpenRLHF codebase [27] and we average the SFT loss
regularizer in RPO by the number of tokens of the chosen response. We do not use chain-of-thought
or few shots in all the benchmarks. We compare the greedy decoding result (pass @1) for MBPP.

Here we use the OpenRLHF codebase [27] to implement a new variant of RPO, where the SFT loss
regularizer is averaged by the number of tokens of the chosen labels, that is, (log 7y (acho|Z))/|@chol-
Such a variant balances the weight of the averaged SFT loss regularizer between the shorter chosen
response and the longer one. We set the coefficient for the SFT loss regularizer as 0.2. We use 8
NVIDIA A100 GPUs for the training and evaluation. The remaining hyperparameters are in Table 7.

Configuration \ Gemma Series
learning rate 5.0e-7
learning scheduler type | cosine with a minimum learning rate
batch size 128
gradient accumulation 8
batch size per device 2
training epoch 2
Jé] 0.5
optimizer adamw torch
seed 42
precision bfloat16

Table 7: Training configurations for DPO and RPO for the experiments in Appendix G.

G.2 Experimental Results

Table 8 demonstrates that our proposed method still outperforms or performs equally to the vanilla
DPO on these benchmarks of math, reasoning, and coding, which verifies the effectiveness of our
proposed method.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We support all the claims made in the abstract and the introduction sections by
our theory and experiment sections.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Please see the discussion of limitation of the work in Appendix B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide the complete and accurate proof in Appendix D.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the detailed training and evaluation configurations in Appendix
F.1 and F.2 for reproducibility. We also submit the codes in the supplementary for the
purpose of reproducibility.

Guidelines:

30



The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the codes in the supplementary. All the datasets, reference models,
and benchmarks used in this paper are open accessed.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see the dataset choice and the detailed training configurations in Section
6 and Appendix F.1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the budget of time and expense, we do not report the error bar, which is
also common in many RLHF literature [46, 34, 71, 64]. However, we report all the training
configurations and the random seed to ensure reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in Appendix F.1.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and followed the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

33



12.

13.

Answer: [NA]

Justification: The scope of our work is not to publish a new released model but to analyze
the overoptimization pheromone in RLHF both theoretically and empirically.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We respect all the licenses and terms of codes, models, and datasets used in
this paper. We also properly cite their creators in this paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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