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Abstract

In human-centric tasks such as healthcare and education, the heterogeneity among
patients and students necessitates personalized treatments and instructional in-
terventions. While reinforcement learning (RL) has been utilized in those tasks,
off-policy selection (OPS) is pivotal to close the loop by offline evaluating and
selecting policies without online interactions, yet current OPS methods often over-
look the heterogeneity among participants. Our work is centered on resolving
a pivotal challenge in human-centric systems (HCSs): how to select a policy to
deploy when a new participant joining the cohort, without having access to any
prior offline data collected over the participant? We introduce First-Glance Off-
Policy Selection (FPS), a novel approach that systematically addresses participant
heterogeneity through sub-group segmentation and tailored OPS criteria to each
sub-group. By grouping individuals with similar traits, FPS facilitates personalized
policy selection aligned with unique characteristics of each participant or group
of participants. FPS is evaluated via two important but challenging applications,
intelligent tutoring systems and a healthcare application for sepsis treatment and
intervention. FPS presents significant advancement in enhancing learning outcomes
of students and in-hospital care outcomes.

1 Introduction
Human-centric systems (HCSs), e.g., used in healthcare facilities [53, 45, 16] and intelligent education
(IE) [5, 26, 68], have widely employed reinforcement learning (RL) to enhance user experience by
improving outcomes of disease treatment, knowledge gaining, etc. Specifically, RL has been used
in healthcare to automate treatment procedures [53], or in IE that can induce policies automatically
adapting difficulties of course materials and helping students to setup and refine study plans to improve
learning outcomes [34, 84]. Though various existing offline RL methods can be adopted [19, 29, 4]
for policy optimization, validation of policies’ performance is often conducted by online testing [61,
74, 69, 10]. Given the long testing horizon (e.g., several years, or semesters, in healthcare, and IE,
respectively) and the high cost of recruiting participants, online testing is considered exceedingly
time- and resource-consuming, and sometimes could even be hindered by protocols overseeing human
involved experiments, e.g., performance and safety justifications need to be provided before new
medical device controllers can be tested on patients [51].

Recently, off-policy evaluation (OPE) methods have been proposed to tackle such challenges by
estimating the performance of target (evaluation) RL policies with offline data, which only requires
the trajectories collected over behavioral polices given a priori; similarly, off-policy selection (OPS)
targets to determine the most promising policies, out of the ones trained with different algorithms
or hyper-parameter sets, that can be used for online deployment [3, 9, 46, 76, 81]. However, most
existing OPS and OPE methods are designed in the context of homogenic agents, such as in robotics
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or games, where characteristics of the agents can be captured by their specifications, which are in
general assumed fully known (e.g., degree of freedom, angular constraint of each joint).

The pivotal challenge in OPE/OPS for HCSs. In contrast, in HCSs, the participants can have highly
diverse backgrounds, where each person may be associated with unique underlying characteristics
that are not straightforward to be captured individually; due to the partial observability of participants’
mind states and the limited size of the cohort that can be recruited for experiments with HCSs.
For example, patients participated in healthcare research studies could have different health/disease
records, while the students using an intelligent tutoring system in IE may have different mindsets
toward studying the course. As a result, the optimal criteria for selecting the policy to be deployed
to each participant can vary, and, more importantly, it would be intractable for existing OPS/OPE
frameworks to determine what the policy selection criteria would be for a new participant who just
joined the cohort. Consequently, there lacks a framework that can resolve the pivotal challenge in
facilitating real-world HCSs – how to select a policy to deploy when a new participant joining the
cohort, without having access to any prior offline data collected over the participant?

In this work, we introduce First-glance off-Policy Selection (FPS), to address the problem of
determining the OPS criteria needed for each new participant joining the cohort (i.e., at t = 0 only, or
without using information obtained from t >= 1 onwards), assuming that we have access to offline
trajectories for a small batch of participants a priori, i.e., the offline data. Specifically, it first partitions
the participants from the offline dataset into sub-groups, clustering together the ones pertaining to
similar behaviors. Then, an unbiased value function estimator, with bounded variance, is developed
to determine the policy selection criteria for each sub-group. At last, when new participants join, they
will be recommended with policies selected according to the sub-groups they fall within. Note that
FPS is distinguished from typical off-policy selection (OPS) setup in the sense that, the major goal
of prior OPS approaches is to select the best policy over the entire population, while FPS aims to
decide the best policy for each student who arrives to the HCS on-the-fly, leveraging the information
observed at the initial step (t = 0) only.

The key contributions of this work are summarized as follows: (i) We introduce the FPS framework
which is critical for closing the gap between OPS and applications pertaining to HCSs, i.e., selecting
the policy that would maximize the gain of the new participants at the point of joining a cohort. To the
best of our knowledge, this is the first framework that considers the new participant arrival’s problem
in the context of OPS in HCSs. (ii) We conduct extensive experiments to evaluate FPS in a real-world
IE system, with 1,288 students participating over 5 years. Results have shown that, with the help of
FPS, it improved the learning outcomes by 208% compared to policy selection criteria hand-crafted
by instructors. Moreover, it leads to 136% increased outcome compared to policies selected by
existing OPS methods. (iii) FPS is also evaluated against an important healthcare application, i.e.,
septic shock treatment [45, 48, 53], where it can accurately identifying the best treatment policies to
be deployed to incoming patients, and outperforms existing OPS methods.

2 First-Glance Off-Policy Selection (FPS)
In this section, we introduce the FPS method, which determines the policy to be deployed to new
participants that join an existing cohort, conditioned only on their initial states. Specifically, the
participants pertaining to the offline dataset are partitioned into sub-groups according to their past
behavior. Then, a variational auto-encoding (VAE) model is used to generate synthetic trajectories
for each sub-group, augmenting the dataset and improving the state-action coverage. Moreover,
an unbiased value function estimator, with bounded variance, is developed to determine the policy
selection criteria for each sub-group. At last, when new participants join, they will be recommended
with the policies conditioned on the sub-groups they fall within respectively. We start with a sub-
section that introduces the problem formulation formally.
2.1 Problem Formulation
The HCS environment is formulated as a human-centric Markov decision process (HC-MDP),
which is a 7-tuple (S,A,P,S0, R, I, γ). Specifically, S is the state space, A is the action space,
P : S × A → S defines transition dynamics from the current state and action to the next state, S0

defines the initial state distribution, R : S ×A → R is the reward function, I is the set of participants
involved in the HCS, γ ∈ (0, 1] is discount factor. Episodes are of finite horizon T . At each time-
step t in online policy deployment, the agent observes the state st ∈ S of the environment, then
chooses an action at ∈ A following the target (evaluation) policy π. The environment accordingly
provides a reward rt = R(st, at), and the agent observes the next state st+1 determined by P . A
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trajectory is denoted as τ (i)π = [. . . , (s
(i)
t , a

(i)
t , r

(i)
t , s

(i)
t+1), . . . ]

T
t=1. Moreover, we consider having

access to a historical trajectory set (i.e., offline dataset) collected under a behavioral policy β ̸= π,
Dβ = {..., τ (i)β , ...}Ni=1, which consist of N trajectories. We first make two assumptions in regards to
the correspondence between trajectories and participants, and the initial state distribution for each
participant, respectively.

Assumption 2.1 (Trajectory-Participant Correspondence). As a participant in human-centric experi-
ments is in general unlikely to undergo exactly the same procedure more than once under the topic
being studied, we assume that there exist a unique correspondence between each trajectory τ (i) and
the participant (i ∈ I) from which the trajectory is logged.

We henceforth can use i to refer to index either a trajectory from the offline dataset, or the correspond-
ing participant, depending on the context.

Assumption 2.2 (Independent Initial State Distributions). The initial state of each trajectory s
(i)
0 ∈

τ (i), corresponding to a unique (the i-th) participant following from the assumption above, is sampled
from an initial state distribution S0(i) conditioned on i-th participant’s characteristics and past records
(i.e., specific to the i-th trajectory), and is independent from all other S0(j)’s where j ∈ [1, N ]\i.5
The assumptions above reflect the scenarios that are specific to HCS – for example, a patient is
unlikely to be prescribed the same surgery twice. Even if the patient has to undergo a follow-up
surgery that is of the similar type (e.g., mostly seen in trauma or orthopedics departments), the
second time when the patient comes in he/she will start with a rather different initial state, since
the pathology may have already been intervened as a result of the last visit. Consequently, one can
treat such a visit as a new (synthetic) participant who just join and has the health record same as
the one updated after the last visit. In other words, a participant being considered in this paper can
be generalized, e.g., to a hospital visit, or a student participating in a specific course supported by
intelligent education (IE) systems, depending on the context. Moreover, assumption 2.2 directly
follows from the philosophy illustrated in assumption 2.1 – the initial state of each trajectory depend
on the corresponding participant’s unique characteristics and historical records before joining the
experiment/cohort, and can be considered mutually independent across all participants. Now we
define the goal for FPS.

Problem 2.3. The goal of FPS is to select the best policy π from a set of pre-trained (candidate)
policies Π, π ∈ Π, for each of the new participants i′ ∈ {N + 1, N + 2, . . . } joining (i.e., arriving
at) the HCS with an observable initial state s0 ∼ S0(i

′) (but the rest of the trajectory remain
unobservable), that maximizes the expected accumulated return V π, maxπ∈Π V π, over the full
horizon T ; here V π = Es0∼S0(i′),(st>0,at>0)∼ρπ,r∼R[

∑T
t=1 γ

t−1rt|π], and ρπ is the state-action
visitation distribution under π from step t = 1 onwards.

Note that the problem formulation here is different than the typical OPS/OPE setup used in existing
works [23, 66, 7, 77, 79, 14, 30], as only the initial state s0 is available for policy selection. Such
a formulation is aligned with use cases under HCSs, e.g., treatment plan needs to be laid out soon
after a new patient is admitted to the intensive care unit (ICU) in medical centers. However, most
indirect OPS methods such as importance sampling (IS) [52, 7] and doubly robust (DR) [23, 66]
require the entire trajectory to be observed, in order to estimate V π. Though direct methods like
fitted-Q evaluation (FQE) [30] could be used as a workaround, they do not take into account the
unique characteristics for each participant that plays a crucial role in HCS applications; results in
Section 3 show that they in general underperform in the real-world IE experiment. To address both
challenges, we introduce the FPS approach, starting with the sub-group partitioning step introduced
below.

2.2 Sub-Group Partitioning
In this sub-section, we introduce the sub-group partitioning step that partition the participants in the
offline dataset into sub-groups. Furthermore, value functions over all candidate policies π ∈ Π are
learned respectively for each sub-group, to be leveraged as the OPS criteria for each sub-group.

The partitioning is performed over the initial state of each trajectory in the offline dataset, τβ ∈ D.
Given assumptions 2.1 and 2.2, and the fact that S0(i)’s in general only share limited support across

5Without loss of generality, in the rest of the paper, we use S0 to represent the marginal distribution of the
initial states over all participants, while S0(i) represents the distribution specific to the i-th participant.
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participants (i.e., every human has unique characteristics and past experience), such partitioning is
essentially performed at per-participant level. Specifically, we consider partitioning the participants
into M sub-groups. Then for all sub-groups, Km’s, in the set of sub-groups, K = {K1, . . . ,KM},
we have

⋃M
m=1 Km = S0 and Km ∩Kn = ∅,∀m ̸= n. The total number of groups M needed can

be determined using silhouette scores [21]. Denote the partition function k(·) : S0 → K. We then
define the value function specific to each sub-group.
Definition 2.4 (Value Function per Sub-group). The value function over policy π, V π

Km
, specific

to the sub-group Km, is the expected accumulative return over the initial states that correspond to
the set of participants Im = {i|k(s(i)0 ) = Km, i ∈ I} residing in the same sub-group. V π

Km
=

Es0∼Unif({S0(i)|i∈Im)}, (st>0,at>0)∼ρπ, r∼R[
∑T

t=1 γ
t−1rt|π], with s0 ∼ Unif({S0(i)|i ∈ Im})

representing that s0 is sampled from a uniformly weighted mixture of distributions over {S0(i)|i ∈
Im}, pertaining to sub-group Km.

The goal of sub-group partitioning is to learn the partition function k(·), such that the difference
between the value of the best policy candidate, maxπ∈Π V π

Km
, and the value of the behavioral policy,

V β
Km

, is maximized for all participants i ∈ I and sub-groups Km ∈ K, i.e.,

max
k

∑
i∈I

[(
max
π∈Π

V π

Km=k
(
s
(i)
0

))− V β

Km=k
(
s
(i)
0

)]. (1)

The objective (1) is designed in the sense that participants may benefit more from the type of policies
that fit better for their individual characteristics. For example, in IE, different candidate lecturing
policies may be used toward prospective high- and low-performers respectively, as justified by the
findings from our real-world IE experiment (centered around Figure 2 in Section 3.2). The value
provided by different policies for a specific type of learners (i.e., sub-group) could be different,
measured by V π

Km
− V β

Km
for all π ∈ Π; here, V β

Km
captures the expected return from a instructor-

designed, one-size-fit-all baseline (i.e., behavioral) policy that is used to collect offline data [38, 68,
84, 11]. Then, it would be crucial to identify to which group each student belongs, as it can maximize
the returns collected by each student throughout the horizon.

Practical off-policy deployment to initiate human-centric experiments over the sub-group
objective (1). Our focus is to select the policy that can possibly work the best for each incoming
individual from a set of policy candidates that are pre-given, which is critical for RL policy deployment
in real-world HCSs, considering online policy optimization can be high-stake. The overall practical
off-policy deployment can be achieved using a two-step approach, i.e., (i) pre-partitioning with offline
dataset, followed by (ii) deployment upon observation of the initial states of arriving participants.
Due to space limitation, the specific steps can be found in Appendix D.1.

Proposition 2.5. Define the estimator D̂π,β
Km

as, i.e.,

D̂π,β
Km

=
1

|Im|
∑
i∈Im

(
ωi

T∑
t=1

γt−1r
(i)
t −

T∑
t=1

γt−1r
(i)
t

)
; (2)

here, Im follows the definition above, which is the set of participants grouped in Km; ωi =

ΠT
t=1π(a

(i)
t |s(i)t )/β(a

(i)
t |s(i)t ) is the IS weight for the i-th trajectory in the offline dataset;

s
(i)
t , a

(i)
t , r

(i)
t are the states, actions, rewards logged in the offline trajectory, respectively. Then,

D̂π,β
Km

is unbiased, with its variance bounded by, i.e.,

V ar(D̂β,π) ≤
∣∣∣∣∣∣ T∑

t=1

γt−1rt

∣∣∣∣∣∣2
∞

( 1

ESS
− 1

N

)
, (3)

with ESS being the effective sample size [27].

The proof of proposition 2.5 is derived from [25] and provided in Appendix D.2.

2.3 Trajectories Augmentation within Each Sub-Group
In HCSs, each sub-group may only contain a limited number of participants, due to the high cost
of recruiting participants as well as time constraints in real-world experiments. For example, in
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the IE experiment in Section 3, one sub-group only contains 45 students as a result from sub-
group partitioning. Consequently, the overall offline trajectories within each group may cover
limited visitations of the state and action spaces, and make the downstream policy selection task
challenging [46]. Latent-model-based data augmentation has been commonly employed in previous
offline RL [20, 31, 58, 14], to resolve similar issues. For this sub-section, we specifically consider the
variational auto-encoder (VAE) architecture introduced in [14], as it is originally designed for offline
setup as well. Now we briefly introduce the VAE setup, which can capture the underlying dynamics
and generate synthetic offline trajectories to improve the state-action visitation coverage within each
subgroup. Specifically, given the offline trajectories Tm specific to the subgroup Km, the VAE
consists of three major components, i.e., (i) the latent prior p(z0) that represents the distribution of the
initial latent states over Tm; (ii) the encoder qη(zt|st−1, at−1, st) that encodes the MDP transitions
into the latent space; (iii) the decoders pξ(zt|zt−1, at−1), pξ(st|zt), pξ(rt−1|zt) that reconstructs
new samples. The training objective is formulated as an evidence lower bound (ELBO) specifically
derived for the architecture above. More details can be found in Appendix D.3. Consequently, for
the trajectories in each subgroup, Tm, the VAE can be trained to generate a set of synthetic samples,
denoted as T̂m. In the Section 3.2, we further discuss and justify the need of trajectory augmentation
through an real-world intelligent education (IE) experiment.

2.4 The FPS Algorithm

Algorithm 1 FPS.
Require: A set of target policies Π, offline dataset D.
Ensure:

// Training Phase.
1: Calculate the number of subgroups M needed for D, using silhouette scores [21].
2: Obtain the sub-group partitioning K = {K1, . . . ,KM} following Section 2.2.
3: for each sub-group Km do
4: Augment sub-group samples Tm with T̂m.
5: Use the estimator in Proposition 2.5 to obtain D̂π,β

Km
for all candidate target policies π ∈ Π, over

Tm ∪ T̂m.
6: Select the best candidate target policy π∗

m that maximizes D̂π,β
Km

as the one to be deployed over Km.
// Deployment Phase.

7: while the HCS receives the initial state s0 from a new participant do
8: Determine the sub-group Km for the new participant.
9: Deploy to the participant the best candidate policy π∗

m specific to sub-group Km .

The overall flow of the FPS framework is described in Algorithm 1. The training phase directly
follow from the sub-sections above. Upon deployment, FPS can help HCSs monitor each arriving
participant, determine the sub-group the participant falls within, and select the policy to be deployed
according to the initial state. Such real-time adaptability is important for HCSs in practice, and is
different from existing OPS works which in general assume either the full trajectories or population
characteristics are known [25, 76, 82]. For example, in practical IE, students may start learning
irregularly according to their own schedules, hence can create discrepancies in their start times. Such
methods fall short in cases when selecting policies based on population or sub-group information in
the upcoming semester – they requires the data from all arriving students are collected upfront, which
would be unrealistic. Note that, to the best of our knowledge, we are the first work that formally
consider the problem of sub-typing arriving participants, and FPS is the first approach that solves this
practical problem by introducing a framework that can work with HCSs in the real-world.

3 Experiments
FPS is tested over two types of HCSs, i.e., intelligent education (IE) and healthcare. Specifically,
the real-world IE experiment involves 1,288 student participating in college entry-level probability
course across 6 academic semesters. The goal is to use the data collected from the students of
the first 5 semesters, to assign pre-trained RL lecturing policies to every student enrolled in the
6-th semester, in order to maximize their learning outcomes. The healthcare experiment targets for
selecting pre-configured policies that can best treat patients with sepsis, over a simulated environment
widely adopted in existing works [45, 46, 65, 36, 12].
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Figure 1: Analysis of main results from the real-world IE experiment. (a) Overall performance
of the 6-th semester’s student cohort. Methods that selected the same policy are merged in one
bin, i.e., all refers to all three variations (raw, +RRS, +VRRS) of the existing OPS baselines. (b)
Estimated and true policy performance using each method. For OPE, OPE+RRS, OPE+VRRS, results
with the least gap between estimated and true rewards among OPE methods (i.e., WIS, FQE+RRS,
and FQE+VRRS, respectively) are shown in the figure. True reward refers to the returns averaged
over the cohort of the 6-th semester, obtained by deploying the policy selected for each student
correspondingly.

3.1 Baselines

Existing OPS/OPE. The most straightforward approach to facilitate OPS in HCSs is to select
policies via existing OPS/OPE methods, by choosing the candidate target policy π ∈ Π that
achieves the maximum estimated return over the entire offline dataset, i.e., indiscriminately across all
potential sub-groups. Specifically, 6 commonly used OPE methods are considered, i.e., Weighted IS
(WIS) [52], Per-Decision IS (PDIS) [52], Fitted-Q Evaluation (FQE) [30], Weighted DR (WDR) [66],
MAGIC [66], and Dual stationary DIstribution Correction Estimation (DualDICE) [44].

Existing OPS/OPE with vanilla repeated random sampling (OPS+RRS). We also compare FPS
against a classic data augmentation method in order to evaluate the necessity of the VAE-based
method introduced in Section 2.3 – i.e., repeated random sampling (RRS) with replacement of the
historical data to perform OPE. RSS has shown superior performance in some human-related tasks,
such as disease treatment [46]. Specifically, all OPS/OPE methods considered above are applied to
the RRS-augmented offline dataset, where the value of each candidate target policy is obtained by
averaging over 20 sampling repetitions. However, note that RRS does not intrinsically consider the
temporal relations among state-action transitions as captured by MDP.

Existing OPS/OPE with VAE-based RRS (OPS+VRRS). This baseline perform OPS with RRS on
augmented samples resulted from the VAE introduced in Section 2.3, in order to allow RRS to consider
MDP-typed transitions, hence improve state-action visitation coverage of the augmented dataset. This
method can, to some extent, be interpreted as an ablation baseline of FPS, by removing the sub-group
partitioning step (Section 2.2), and slightly tweaking the VAE-based offline dataset augmentation step
(Section 2.3) such that it does not need any sub-group information. Specifically, we set the amount of
augmented data identical to the amount of original historical data, i.e., |T̂ | = |T | = N , and RRS N

samples from both set T̂ ∪ T to perform OPE. Final estimates are averaged results from 20 repeated
sampling processes.

FPS without trajectory augmentation (FPS-noTA). This is the ablation baseline that completely
removes from FPS the augmentation technique introduced in Section 2.3.

FPS for the population (FPS-P). We consider on additional ablation baseline that follows the same
training steps as FPS (i.e., steps 1-7 of Alg. 1), but rather select a single policy that is identified (by
FPS) as the best for majority of the sub-groups, to be deployed to all participants. In other words,
after training, FPS produces the mapping h : K → Π, while FPS-P will always deploy to every
arriving participant the policy that appears most frequently in the set {h(Km)|Km ∈ K}.
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3.2 The Real-World IE Experiment
The IE system has been integrated into a undergraduate-level introduction to probability and statistics
course over 6 semesters, including a total of 1,288 student participants. This study has received
approval from the Institutional Review Board (IRB) at the institution to ensure ethical compliance.
Additionally, oversight is provided by a departmental committee, which is responsible for safeguard-
ing the academic performance and privacy of the participants. In this educational context, each
learning session revolves around a student’s engagement with a set of 12 problems, with this period
referred to as an "episode" (horizon T = 12). During each step, the IE system offers students three
actions: independent work, utilizing hints, or directly receiving the complete solution (primarily
for study purposes). The states space is constituted by by 140 features that have been meticulously
extracted from the interaction logs by domain experts, which encompass various aspects of the
students’ activities, such as the time spent on each problem and the accuracy of their solutions. The
learning outcome is issued as the environmental reward at the end of each episode (0 reward for all
other steps), measured by the normalized learning gain (NLG) quantified using the scores received
from two exams, i.e., one taken before the student start using the system, and another after. Data
collected from the first 5 semesters (over a lecturer-designed behavioral policy) are used to train
FPS for selecting from a set of candidate policies to be deployed to each student in the cohort of
the 6-th semester, including 3 pre-trained RL policies and 1 benchmark policy (whose performance
benchmark the lower-bound of what could be tested with student participants). See Appendix A for
the definition of NLG, details on pre-trained RL policies, and more.

Figure 2: Performance of students (mean±se)
over all four sub-groups under selected policies
in the 6-th semester.

Main results. Figure 1(a) presents students’ perfor-
mance under policies selected by different methods.
Overall, FPS was the most effective policy selec-
tion leading to the greatest average student perfor-
mance. The return difference between FPS and
the two ablation, FPS-noTA and FPS-P, illustrate
the importance of augmenting offline trajectories
(as introduced in Section 2.3) and assign to arriv-
ing students policies that better fit the character-
istics shared within their sub-groups, respectively.
Moreover, most existing OPS/OPE methods tend
to select sub-optimal policies that resulted in bet-
ter learning gain than the benchmark policy. Note
that we also observed that DualDICE could not dis-
tinguish the returns over all target policies; thus,
it is unable to be used for policy selection in this
experiment and we omit its results. It is also impor-
tant to evaluate how accurate the value estimation
V π∗

· would be for the best candidate policy selected
across all methods, over the arriving student cohort
at the 6-th semester, as illustrated in Figure 1(b).
FPS provided more accurate policy estimation by
achieving the smallest error between true and es-
timated policy rewards. With VRRS, most OPS
methods improved their policy estimation performance, which was benefited from the richer state-
action visitation coverage provided by the synthetic samples generated by VRRS. However, even
with such augmentations, existing OPS methods still chose sub-optimal policies, which justified the
importance of considering participant-specific characteristics in HCSs, which is tackled by sub-group
partitioning in FPS (Section 2.2).

More discussions. For a more comprehensive understanding of student behaviors affected by the
policy being deployed in IE, we further investigate how the sub-groups are partitioned and how the
policies being assigned to each sub-group perform. Specifically, FPS identified four subgroups (i.e.,
K1,K2,K3,K4) as a result of Section 2.2. Under the behavioral policy, the average NLG across all
students is 0.9 with slight improvement after tutoring. Specifically, K1(Ntrain = 345, Ntest = 30)
and K2(Ntrain = 678, Ntest = 92) achieved average NLG of 1.9 [95% CI, 1.7, 2.1]6 and 0.7
[95% CI, 0.6, 0.8] under the behavioral policy, respectively. In the testing (6-th) semester, FPS

6CI stands for confidence interval.
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Table 1: The absolute errors (AEs) and returns resulted from deploying to each patient the corre-
sponding candidate policy selected by FPS against baselines, as well as the top-1 regret (regret@1)
of the selected policy, averaged over 10 different simulation runs. Standard errors are rounded.

FPS WIS PDIS FQE WDR MAGIC

N=2,500 AE 0.026±0.00 0.054±0.00 0.109±0.00 0.070±0.01 8.281±0.00 5.681±0.00
Return 0.132±0.02 0.121±0.01 0.121±0.01 0.129±0.00 0.121±0.01 0.129±0.00
Regret@1 0.042±0.01 0.066±0.00 0.066±0.00 0.106±0.09 0.066±0.00 0.106±0.09

N=5,000 AE 0.006±0.00 0.046±0.00 0.082±0.00 0.073±0.01 3.443±0.01 3.238±0.01
Return 0.149±0.01 0.123±0.01 0.123±0.01 0.121±0.01 0.123±0.01 0.123±0.01
Regret@1 0.020±0.00 0.050±0.00 0.050±0.00 0.208±0.13 0.050±0.00 0.050±0.00

N=10,000 AE 0.022±0.00 0.022±0.00 0.097±0.00 0.105±0.00 0.995±0.01 1.210±0.01
Return 0.130±0.00 0.129±0.00 0.121±0.00 0.121±0.00 0.121±0.00 0.121±0.00
Regret@1 0.016±0.00 0.019±0.00 0.029±0.01 0.029±0.01 0.029±0.01 0.029±0.01

constantly selected the best performing policy for students identified as sub-groups K1 and K2, with
learning outcomes improvement quantified as 17.7 [95% CI, -1.7, 37.1] and 13.6 [95% CI, -5.2,
32.4] in terms of NLGs, respectively, as shown in Figure 2. This is on the same level achieved by the
best possible baseline combinations worked for each student, regardless of the base OPS algorithm
used, i.e., the union of the best performance reported from the 18 baselines involving existing OPS
methods (introduced in the first 3 paragraphs of Section 3.1) over each student. However, note that
in reality one does not have access to such an oracle in terms of which 1 out of the 18 baseline
methods would work well for each arriving student upfront (i.e., at the beginning of the semester).
In contrast, FPS achieved the same level of performance without the need for an oracle. Note that
sub-groups K1 and K2, were less sensitive to target policies and achieved positive NLG in both
training and testing semester. On the other hand, offline data over the behavioral policy showed
that K3(Ntrain = 101, Ntest = 12) and K4(Ntrain = 24, Ntest = 6) are associated with negative
average NLGs of -0.5 [95% CI, 1.7, 2.1] and -1.5 [95% CI, -0.3, 1.2], respectively, which can be
considered low performers. It is observed that students in sub-group K3 performed kept moving
rapidly among questions while working on the IE system, indicating that they were not seriously
tackling any one of the questions; while participants in K4 abused hints, but still made much more
mistakes in the meantime. Figure 2 also presents the NLG of students from the low-performing
subgroups K3 and K4 under policies selected by the best existing-OPS baselines (following the
oracle as above) and FPS. Under FPS, both subgroups achieved significant improvement (average
NLGs 24.0 [95% CI, 10.2, 37.7] and 31.7 [95% CI, 10.1, 53.3], respectively) compared to students
in historical semesters. However, the sub-optimal policy chosen by baselines had a negative effect
on both sub-groups (average NLGs -11.7 [95% CI, -18.1, -5.3] and -19.9 [95% CI, -72.1, 32.4],
respectively); see Figure 1(a). Such an observation particularly justifies the need for personalizing
the policies deployed to different type of participants (i.e., students), especially for the sub-groups
(i.e., low-performers), since they can be more sensitive to policy selection. Based on the statistics
reported above, FPS improved the NLG of students by 208% over the lecturer-designed behavioral
policy, and by 136% over the union of the best performance achieved across existing-OPS-based
baselines. Though the difference may not be large for potential high-performing sub-groups (e.g., K1

& K2), we observed that the baselines can even have a negative effect on some sub-groups (e.g.,K3

& K4), which is undesired in human-centric experiments. In empirical human-centric scenarios,
such as education, the behavior policy is generally highly regularized by department committees
strictly following guidance from human-centric experiments, such that the target policy would not
be dramatically opposed to the behavior policy – suggesting the underlying assumption that the
divergence between behavior and target policies could be intrinsically bounded. To this end, the
FPS framework has the potential to facilitate fairness in RL-empowered HCSs in general – we have
discussed this in details in Appendix A.5.

3.3 The Healthcare Experiment
In this experiment, we consider selecting the policy that can best treat sepsis for each patient in the
ICU, leveraging the simulated environment introduced by [48], which has been widely adopted in
existing works [22, 46, 65, 36, 12, 45]. Specifically, the state space is constituted by a binary indicator
for diabetes, and four vital signs {heart rate, blood pressure, oxygen concentration, glucose level} that
take values in a subset of {very high, high, normal, low, very low}; size of the state space is |S| = 1440.
Actions are captured by combinations of three binary treatment options, {antibiotics, vasopressors,
mechanical ventilation}, which lead to |A| = 23. Three candidate target policies are considered
and provided by [45], i.e., (i) without antibiotics (WOA) which does not administer antibiotics right
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after the patient is admitted, (ii) with antibiotics (WA) that always administer antibiotics once the
patient is admitted, (iii) an RL policy trained following policy iteration (PI). Note that as pointed
by [45], the true returns of WA and PI are usually close, since antibiotics are in general helpful
for treating sepsis, which is also observed in our experiment; see Table 1. Moreover, a simulated
unrecorded comorbidities is applied to the cohort, capturing the uncertainties caused by patient’s
underlying diseases (or other characteristics), which could reduce the effects of the antibiotics being
administered. See Appendix B for more details in regards to the environmental setup.

Given the simulated environment, we mainly consider using this experiment to evaluate the source of
improvement brought in by the sub-group partitioning step (Section 2.2) in FPS. Specifically, multiple
scaled offline datasets are generated, representing different degrees of the state-action visitation
coverage – we vary the total number of trajectory N={2,500, 5,000, 10,000}, in lieu of performing
trajectory augmentations for both FPS and existing OPS baselines. In other words, in this experiment,
we consider the FPS without the VAE augmentation step introduced in Section 2.3, as well as the 6
original OPS baselines (without any RRS/VRRS) introduced in Section 3.1. We believe this setup
would help isolate the source of improvements brought in by sub-group partitioning. The average
absolute errors (AEs), in terms of OPE, and returns, in terms of OPS, resulted from deploying to
each patient the corresponding candidate policy selected by FPS against baselines, are reported in
Table 1. It can be observed that FPS achieved the lowest AE and highest return regardless of the size
of the offline dataset. We additionally evaluate the top-1 regret (i.e., regret@1) of the selected policy
following FPS and baselines, which are also reported in Table 1. It can be observed that FPS achieved
exceedingly low regrets compared to baselines. Both observations emphasize the effectiveness of the
sub-group partitioning technique leveraged by FPS, as the environment does capture comorbidities as
part of the participant characteristics. Moreover, the AEs and regrets of most methods decrease when
the size of offline dataset increase, justifying that improved state-action visitation coverage provided
by the offline trajectories is crucial for reducing estimation errors and improving policy selection
outcomes (i.e., the motivation of trajectory augmentation introduced in Section 2.3).

4 Related Works

Off-policy selection (OPS). OPS are typically approached via OPE in existing works, by estimating
the expected return of target policies using historical data collected under a behavior policy. A
variety of contemporary OPE methods has been proposed, which can be mainly divided into three
categories [72]: (i) direct methods that directly estimate the value functions of the evaluation
policy [44, 67, 79, 76], including but not limited to model-based estimators (MB) [17, 14, 15, 79],
value-based estimators [30] such as Fitted Q Evaluation (FQE), and minimax estimators [35, 80, 70]
such as DualDICE [77]; (ii) inverse propensity scoring, or indirect methods [52], such as Importance
Sampling (IS) [7]; (iii) hybrid methods combine aspects of both inverse propensity scoring and direct
methods [66], such as DR [23]. In practice, due to expensive online evaluations, researchers generally
selected the policy with the highest estimated rewards via OPE. For example, Mandel et al. selected
the policy with the maximum IS score to be deployed to an educational game [38]. Recently, some
works focused on estimator selection or hyperparameter tuning in off-policy selection [46, 75, 63, 43,
28, 32, 65, 50]. However, retraining policies may not be feasible in HCSs as online data collection
is time- and resource-consuming. More importantly, prior work generally selected policies without
considering the characteristics of participants, while personalized policy is flavored towards the needs
specific to HCSs.

RL-empowered automation in HCSs. In modern HCSs, RL has raised significant attention toward
enhancing the experience of human participants. Previous studies have demonstrated that RL can
induce IE policies [1, 38, 60, 73]. For example, Zhou et al. [84] applied hierarchical reinforcement
learning (HRL) to improve students’ normalized learning gain in a Discrete Mathematics course, and
the HRL-induced policy was more effective than the Deep Q-Network induced policy. Similarly, in
healthcare, RL has been used to synthesize policies that can adapt high-level treatment plans [53, 45,
36], or to control medical devices and surgical robotics from a more granular level [16, 37, 55]. Since
online evaluation/testing is high-stake in practical HCSs, effective OPS methods are important in
closing the loop, by significantly reducing the resources needed for online testing/deployment and
preemptively justifying safety of the policies subject to be deployed.

9



5 Conclusion and Limitation

In this work, we introduced the FPS framework that facilitated policy selection in real-world HCSs; it
tackled the off-policy deployment with new arrivals problem that is pivotal for RL policy deployment
in HCSs. Unlike existing OPS methods, FPS customized the policy selection criteria for each sub-
group respectively. FPS was tested in a real-world IE experiment and a simulated sepsis treatment
environment, which significantly outperformed baselines. Though in the future it would be possible to
extend FPS to a offline RL policy optimization framework, however, in this work we specifically focus
on the OPS task in order to isolate the source of improvements brought in by sub-group partitioning
and trajectory augmentation. Future avenues along the line of FPS also include deriving estimators
(for Proposition 2.5) that allow bias-variance trade off, e.g., by integrating WDR or MAGIC (to
substitute the IS weights). Societal and broader impacts are discussed in Appendix C.

Compared to IE systems, HCSs in healthcare would be considered even more high-stakes, thus
may further limit the options (i.e., policies) that are available to facilitate sub-grouping experiments,
due to stricter clinical experimental guidelines. However, FPS has demonstrated its extraordinary
capabilities over a real-world experiment that involved >1,200 participants with years of follow-ups,
which showed its efficacy and scalability toward working with more challenging systems and larger
cohorts as in healthcare, as the assumptions needed by FPS across these two systems would not
change fundamentally. Moreover, potential underlying confounding may exist across the patient’s
initial states in healthcare, and it is also important to consider inputs from healthcare professionals
during sub-grouping. As a result, one may further extend our framework toward such a direction,
allowing it to function better in the healthcare domain.
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A Detailed Setup of the IE Experiment and Additional Discussions

A.1 The IE System for the College Entry-Level Course.

Though the problem setting and our method are general and can be applied to other interactive IE
systems, we primarily focus on the system specifically used in an undergraduate probability course at
a university, which has been extensively used by over 1, 288 students with ∼800k recorded interaction
logs through 6 academic years. The IE system is designed to teach entry-level undergraduate students
with ten major probability principles, including complement theorem, mutually exclusive theorem,
independent events, De Morgan’s theorem, addition theorem for two events, addition theorem for
three events, conditional independent events, conditional probability, total probability theorem, and
Bayes’ rule.

Figure 3: Graphical user interface (GUI) of the IE sys-
tem. The problem statement window (top) presents the
statement of the problem. The dialog window (middle
right) shows the message the tutor provides to the stu-
dents. Responses, e.g., writing an equation, are entered
in the response window (bottom right). Any variables
and equations generated through this process are shown
on the variable window (middle left) and equation win-
dow (bottom left).

Each students went through four phases,
including (i) reading the textbook; (ii) pre-
exam; (iii) studying on the IE system; and
(iv) post-exam. During the reading text-
book phase, students read a general de-
scription of each principle, review exam-
ples, and solve some training problems to
get familiar with the IE system. Subse-
quently, they take a pre-exam comprising
a total of 14 single- and multiple-principle
problems. During the pre-exam, students
are not provided with feedback on their
answers, nor are they allowed to go back
to earlier questions (so as the post-exam).
Then, students proceed to work on the IE
system, where they receive the same 12
problems in a predetermined order. Af-
ter that, students take the 20-problem post-
exam, where 14 of the problems are iso-
morphic to the pre-exam and the remain-
ders are non-isomorphic multiple-principle
problems. Exams are auto-graded following the same grading criteria set by course instructors.

Since students’ underlying characteristics and mind states are inherently unobservable [38], the IE
system defined its state space with 142 features that could possibly capture students’ learning status
based on their interaction logs, as suggested by domain experts. While tutoring, the agent makes
decisions on two levels of granularity: problem-level first and then step-level. For problem-level,
it first decides whether the next problem should be a worked example (WE) [64], problem-solving
(PS), or a collaborative problem-solving worked example (CPS) [59]. In WEs, students, observe how
the tutor solves a problem; in PSs, students solve the problem themselves; in CPSs, the students
and the tutor co-construct the solution. If a CPS is selected, the tutor will then make step-level
decisions on whether to elicit the next step from the student or to tell the solution step to the
student directly. Besides post-exam score, another important measure of student learning outcomes
is their normalized learning gain (NLG), which is calculated by their pre- and post-exam scores
NLG =

scorepostexam−scorepreexam√
1−scorepreexam

. The NLG defined in [5], represents the extent to which students

have benefited from the IE system in terms of improving their learning outcomes.

A.2 Classroom Setup

Participants recruitment. All participants were entry-level undergraduates majoring in STEM and
enrolled in the Probability course in a college. They were recruited via invitation emails and told
the procedure of the study and their data were used for research purpose only, and the study was an
opt-in without influence on their course grades. Participants can also opt-in not recording their logs
and quit the study any time. No demographics data or course grades were collected. All participants
had acknowledged the study procedure and future research conducted using their logs.
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Principles taught by the IE system. Table 3 shows all ten principles for the IE system to teach
designed for the undergraduate entry-level students with STEM majors.

Pre- and post-exams. As introduced in Section 2, we use pre- and post-exams to measure the extent
to which students have benefited from the IE system for improved learning outcomes. Tables 4 & 5
contain all problems in pre- and post-exams during our experiment with the IE system.

The set of candidate target policies under consideration. For safety concerns, only three RL-
induced target policies that passed expert sanity checks can be deployed, while the expert policy
still remained in the semester as the control group. For fairness concerns, the IE system randomly
assigned a policy to each student, while we tracked the policies selected by FPS on each subgroup to
evaluate its effectiveness. The chi-squared test was employed to check the relationship between policy
assignment and subgroups, and it showed that the policy assignment cross subgroups were balanced
with no significant relationship (p-value=0.479). In the testing semester, 140 students accomplished
all problems and exams.

We provide the design of each problem regarding principles coverage for readers’ interests. Detailed
problem descriptions are omitted for identity and anonymity, which are only accessible within the
research groups under IRB. An example problem description is shown in Figure 3.

A.3 Environmental Setup of the IE System

A.3.1 State Features.

The state features were defined by domain experts that could possible capture students’ learning status
based on their interaction logs. In sum, 142 features with both discrete and continuous values are
extracted, we provide summary descriptions of the features characterized by their systematic functions:
(i) Autonomy (10 features): the amount of work done by the student, such as the number of times the
student restarted a problem; (ii) Temporal Situation (29 features): the time-related information about
the work process, such as average time per step; (iii) Problem-Solving (35 features): information
about the current problem-solving context, such as problem difficulty; (iv) Performance (57 features):
information about the student’s performance during problem-solving, such as percentage of correct
entries; (v) Hints (11 features): information about the student’s hint usage, such as the total number
of hints requested.

A.3.2 Actions & rewards.

See A.1 above.

A.3.3 Behavior policy.

The behavior policy follows an expert policy commonly used in e-learning [83], randomly taking
the next problem as a worked example (WE), problem-solving by students (PS), or a collaborative
problem-solving working examples (CPS). Note that the three decision choices are designed by
domain experts that are found can support students’ learning in prior works [59, 64], thus the expert
policy is considered as effective.

A.3.4 Target (evaluation) policies.

In total, four target policies, including three RL-induced and the expert policy, were examined in
testing semester. The three RL-induced policies were trained using off-policy DQN-based algorithm,
and passed expert sanity check. In this study, expert sanity check were conducted by departments and
independent instructors for pre-examination of the target policies.

Specifically, we employed the DQN-based algorithm designed by domain researchers [24], called
Critical-RL, that have achieved empirical significance in real-world classrooms, and passed expert
sanity check by our institutions. First, for each problem, a pair of adversarial policies using vanilla
DQN algorithm were induced, including an original policy induced using the original rewards and an
inversed policy induced using the inversed rewards (i.e., the negative value of the original rewards).
Then, critical decisions are identified following two rules: (1) Given the state, the two policies make
opposite decisions; and (2) the decision is important (critical) for both policies. For a given state,
rule (1) is tested first. If the adversarial policies make the same decisions, it is not critical. Otherwise,
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rule (2) is tested. In order to measure the importance of the decision for each policy, we calculate the
absolute Q-value difference between the two alternative actions. If this difference is greater than a
threshold, the decision is considered important (critical). A critical-RL policy carries out the original
policy when a decision is recognized as critical, and expert policy for the rest. Overall, in this study,
we examined one critical-RL policy and two variations of it, i.e., a policy carrying out original policy
when a decision is not critical, and a policy carrying out original policy over all decisions. We set
the threshold to be the median Q-value difference for all decisions in our training data set following
the settings of the original Critical-RL work [24]. Each pair of of adversarial policies considered all
parts of the training data were identical, such as state representation and transition samples, except
the rewards. We use the learning rate lr = 1e− 3 for inducing DQN policies.

A.3.5 Sub-group identification.

Specifically, to learn the subgroups in the IE system, we leverage an off-the-shelf algorithm called
Toeplitz inverse covariance-based clustering (TICC) [21] to map initial logs S0 into M clusters based
on the values of student-sensitive features (as defined in Appendix A.4), where each s0 ∈ S0 is
associated with a cluster from the set K = {K1, . . . ,KM}, over the offline dataset, from which the
number of individuals within each cluster is intrinsically determined. Specifically, TICC initially
clusters all states from the offline dataset, where the states that are mapped to the same cluster can be
considered to share the graphical connectivity structure of cross-features and temporal information
captured by TICC. Then the clusters of initial states can be determined accordingly from the clustering
outcomes. We consider using TICC because of its superior performance in clustering compared
to traditional distance-based methods such as K-means, especially with human behavior-related
tasks [21, 78], such that the clusters of initial logs could be more scalable and capable of the evolving
individuals and their behaviors in real-world HCSs. For a new participant arriving in the testing
period, the cluster where the participant may belong to is the cluster exhibiting the least averaging
distance between the initial states of the participant and samples within the cluster captured from the
offline dataset.

The size of clusters is determined by a data-driven procedure following the original TICC work (i.e., it
is determined with the highest silhouette score in clustering historical trajectories) [21]. Note that we
exhibit TICC as an example in our proposed pipeline, while it can be replaced by other partitioning
approaches if needed. Then, we assume subgroup partitioning is consistent with cluster assignments
associated with initial logs, i.e., students whose initial logs are associated with the same cluster index
are considered from the same subgroup.

TICC Problem. Each cluster m ∈ [1,M ] is defined as a Markov random field [57], or corre-
lation network, captured by its Gaussian inverse covariance matrix Σ−1

m ∈ Rc×c, where c is the
dimension of state space. We also define the set of clusters K = {K1, . . . ,KM} ⊂ R as well
as the set of inverse covariance matrices Σ−1 = {Σ−1

1 , . . . ,Σ−1
M }. Then the objective is set to

be: max
Σ−1,K

∑M
m=1

[∑
s
(i)
t ∈Km

(
L(s(i)t ; Σ−1

m )− ϵ1{s(i)t−1 /∈ Km}
)]
, where the first term defines the

log-likelihood of s(i)t coming from Km as L(s(i)t ; Σ−1
m ) = − 1

2 (s
(i)
t − µmk)TΣ−1

m (s
(i)
t − µm) +

1
2 log detΣ

−1
m − n

2 log(2π) with µm being the empirical mean of cluster Km, the second term
1{s(i)t−1 /∈ Km} penalizes the adjacent events that are not assigned to the same cluster and ϵ is a
constant balancing off the scale of the two terms. This optimization problem can be solved using the
expectation-maximization family of algorithms by updating Σ−1 and K alternatively [21].

A.4 Data Pre-Processing for Sub-Group Partitioning with the IE Experiment

The initial logs (serving as the initial states in the MDP) of students are used for sub-group partitioning,
which is now only benefited from the FPS framework design but over two educational perspectives.
First, initial logs may reflect not only the background knowledge of students but their interaction
habits [13], without specific information related to behavior policies that may be distracting for
sub-group partitioning. Though some existing works utilize demographics or grades of students from
their prior taken courses to identify student subgroups [2, 62], it may not be feasible in practice due to
the protection of student information by institutions. Second, prior works have found that initial logs
can be informative to indicate learning outcomes of students [39], which makes it possible for the IE
system to customize the policies with the goal of improving learning outcomes for each subgroup.
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However, there is a challenge with sub-group partitioning over the initial logs of students. The state
space of student logs in the IE system is usually high-dimensional, due to the detailed capture of
each step taken during interaction and associated timing information [5, 38]. For example, in this
study, 142 features have been recorded. While some features might be irrelevant for downstream data
mining tasks, it is challenging to determine their relevance a priori [38]. To solve this, we used a
data-driven feature taxonomy over the state features of students, then perform subgroup partitioning
with distilled features based on the feature taxonomy.

The data-driven feature taxonomy over state features of students. Educational researchers have
used feature taxonomy in qualitative ways to support instructors subgroup students and understand
behaviors of students [40]. Unlike prior approaches that are expensive requiring much effort from
human experts, we used a data-driven feature taxonomy for a straightforward student subgroup
partitioning that may reflect the knowledge background and dynamic learning progress of students.
Specifically, we define three major categories of features according to their temporal and cross-
student characteristics: (i) System-assigned: the features, which are static across students on the same
problem, are assumed to be assigned by the system; (ii) Student-centric: the features, which differ
across students from the initial logs and may change over time, is assumed to be students-centric
and reflect both students’ initial knowledge background and the changes of individual underlying
mindset during learning; (iii) Interaction-driven: the features, which contain characteristics from both
system-assigned and student-centric types, are assumed to be mixed-style features that are affected by
both system and individuals. For example, the number of tells since elicit is set with a default
value by the system while changing over time depending on students’ progress.

Table 2: Feature taxonomy with examples and percentage in
the the IE system.

Taxonomy Examples Perc.

System-assigned Problem difficulty 18%
Student-centric Number of hints requested 48%
Interaction-driven Number of tells since elicit 34%

Sub-group partitioning with dis-
tilled features via feature taxonomy.
Since system-assigned features are
mainly dominated by system design
and remain static across students on
each problem, for the purpose of sub-
group partitioning, we focus on the
two types of features, student-centric
and interaction-driven, since both could be highly associated with students’ underlying mental status
and behaviors, for which we call student-sensitive features. In this work, we identified 82%(117)
from overall 142 features as student-sensitive features and used them for subgroup partitioning.

A.5 More Discussions over the Results from Section 3.2

Figure 4: Mean absolute error (MAE) of OPE AugRRS with subgroup partitioning over problems in
historical data.

Would sub-group partitioning over a longer trajectory improve the performance of the
OPS+VRRS baselines? Recall that OPS+VRRS deployed the sub-optimal to most students, while
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their estimation accuracy (i.e., absolute error) was improved compared to purely OPS and OPS+RRS
(Figure 1(b)), which is outperformed by FPS over a slight margin. We further investigate the effects of
subg-roup partitioning with longer trajectory information on OPS+VRRS performance. We conduct
sub-group partitioning over the length of trajectories, i.e., perform sub-group partitioning on the
averaged states’ features associated with the first ∆ problems across historical trajectories, where
∆ ∈ [1, 11] excluding the final problem. Then we augment the same amount of samples for each
subgroup K, i.e., |T̂K | = |TK | = |K| and perform OPS+RRS. We observe that in all 55 conditions
except the five (i.e., WIS+VRRS ∆ = 4, 11, PDIS+VRRS ∆ = 8, and FQE+VRRS ∆ = 7, 8), all
OPS+VRRS still select the sub-optimal policy. Figure 4 presents the mean absolute error (MAE) of
the OPS+VRRS methods over the four target policies. It shows the trend of improved MAE over the
number of problems for most methods. Those indicate that more information over a longer trajectory
does have some positive effects on OPS+VRRS, but their policy selection is hard to be improved and
stabilized. More students-centric and robust OPS methods are needed for IE policy selection.
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Table 3: Principles taught by the IE system for undergraduate entry-level students.
Abbr. Name of principle Expression
CT Complement Theorem P (A) + P (¬A) = 1
MET Mutually Exclusive Theorem P (A ∩B) = 0 iff A and B are mutually exclusive events
IE Independent Events P (A ∩B) = P (A)P (B) if A and B are independent events
DMT De Morgan’s Theorem P (¬(A ∪B)) = P (¬A ∩ ¬B), P (¬(A ∩B)) = P (¬A ∪ ¬B)
A2 Addition Theorem for two events P (A ∪B) = P (A) + P (B)− P (A ∩B)
A3 Addition Theorem for three events P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− p(B ∩ C) + P (A ∩B ∩ C)
CIE Conditional Independent Events P (A ∩B|C) = P (A|C)P (B|C) if A and B are independent events given C
CP Conditional Probability P (A ∩B) = P (A|B)P (B) = P (B|A)P (A)
TPT Total Probability Theorem P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + . . . + P (A|Bn)P (Bn)

if B1, B2, · · · , Bn are mutually exclusive events and B1 ∪B2 ∪ · · · ∪Bn = W
BR Bayes Rule P (Bi|A) = P (A|Bi)P (Bi)/P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn)

if B1, B2, · · · , Bn are mutually exclusive events and B1 ∪B2 ∪ · · · ∪Bn = W

Table 4: Pre-exam problems in the IE system.

Problem CT MET IE DMT A2 A3 CIE CP TPT BR
1 ✓
2 ✓
3 ✓
4 ✓ ✓ ✓
5 ✓
6 ✓ ✓
7 ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓
9 ✓
10 ✓
11 ✓
12 ✓
13 ✓
14 ✓

Table 5: Post-exam problems in the IE system.

Problem CT MET IE DMT A2 A3 CIE CP TPT BR Iso-Test-Problem
1 ✓ 11
2 ✓ ✓ ✓ 7
3 ✓ ✓ ✓ 4
4 ✓ 9
5 ✓ 3
6 ✓ 10
7 ✓ 2
8 ✓ 13
9 ✓ ✓ ✓ N/A
10 ✓ 14
11 ✓ 5
12 ✓ 12
13 ✓ ✓ 6
14 ✓ ✓ N/A
15 ✓ ✓ ✓ ✓ N/A
16 ✓ ✓ N/A
17 ✓ 1
18 ✓ ✓ ✓ ✓ ✓ 8
19 ✓ ✓ ✓ ✓ N/A
20 ✓ ✓ ✓ N/A
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B Detailed Setup of the Healthcare Experiment

We use the sepsis simulator developed by [48] and benchmark settings of [45].

B.1 States & actions.

The definition of states and actions are introduced in Section 3.3.

B.2 Rewards.

We also follow the benchmark [45] in terms of configuring the reward function and behavioral policy.
Specifically, a reward of -1 is received at the end of horizon (T = 5) if the patient is deceased (i.e.,
at least three vitals are out of the normal range), or +1 if discharged (when all vital signs are in the
normal range without treatment).

B.3 Optimal policy.

To learn the optimal policy, [45] used policy iteration to learn the optimal policy, and created a near-
optimal (soft optimal) policy by having the policy take a random action with probability 0.05, and the
optimal action with probability 0.95. The value function (for the optimal policy) was computed using
value iteration. The discount factor γ = 0.99.

B.4 Behaivor policy.

The behaviour policy is a mixture of two policies: 85% the soft optimal policy and 15% of a
sub-optimal policy that is similar to the soft optimal but the vasopressors action is flipped.

B.5 Target policies.

See Section 3.3.

C Societal and Broader Impacts

C.1 Societal Impacts

All real-world data employed in this paper were obtained anonymously through exempt IRB-approved
protocols and were scored using established rubrics. No demographic data or class grades were
collected. All data were shared within the research group under IRB, and were de-identified and
automatically processed for labeling. This research seeks to remove societal harms that come from
lower engagement and retention of students who need more personalized interventions and developing
more robust medical interventions for patients.

C.2 Broader Impact on Facilitating Fairness in RL-Empowered HCSs

Fairness in AI-empowered HCSs has been a long-standing concern [33, 42, 47, 56, 8]. The FPS frame-
work can be potentially extended to promote fairness to a certain extent, by helping minority/under-
represented groups to boost their utility gain through deployment of customized policy specific to the
group. Specifically, following FPS, the sub-group partitioning step can identify the small-scaled yet
important groups, then the policy that is most beneficial for the group can be deployed to maximize
the gain. As illustrated by Figure 2, FPS effectively identifies the low-performing students (group
K4), which only constitute < 5% of the overall population at the 6-th (testing) semester, without
leveraging any subjective information a priori (i.e., sub-group partitioning uses exactly the same
features across all students). FPS then significantly boosts their performance by deploying the policy
most suitable for the group. Similarly, one can easily extend the FPS framework to intelligent HCSs
oriented toward other applications, in order to identify the groups that potentially need more attention,
and help all participants to achieve similar gain indiscriminately by deploying the right policy to each
participant.
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D More on the Methodology

D.1 Practical Off-Policy Deployment in HCSs over the Sub-Group Objective (1).

The overall off-policy deployment can be achieved using a two-step approach, i.e., (i) pre-partitioning
with offline dataset, followed by (ii) deployment upon observation of the initial states of arriving
participants.

To facilitate (i), clustering methods, such as TICC [21], is used to learn a preliminary partitioning
l : S0 → K. Then, the value function estimator D̂π,β

Km=l(s0)
is trained for estimating V π

Km=l(s0)
−

V β
Km=l(s0)

using part of the offline trajectories whose initial state s0 falls in the corresponding
group Km = l(s0) following Proposition 2.5, for all Km ∈ K.7 At last, one can learn a mapping
d : S0 × Π×K → R to reconstruct Dπ,β

Km
’s estimation using the (s0, π,Km) triplets as the inputs

(e.g., by minimizing squared error).

In step (ii), plug into d(s
(i)
0 , π,Km) all policy candidates π ∈ Π and all possible partitions Km ∈

K. Then, one can determine which policy π satisfies maxπ∈Π d(s
(i)
0 , π,Km). Assuming the pre-

partitioning over offline dataset is knowledgeable about initial logs of participants, for each arriving
participant i′ ≥ N with their initial log s

(i′)
0 , determine the cluster they may most likely belong

to. For example, the cluster Km with the least averaging distance between s
(i′)
0 and s

(i)
0 , for every

s
(i)
0 ∈ Km. Then, assign to participant i′ the corresponding group k(s

(i′)
0 ) = Km, as captured by the

mapping function k : S0 → K. Deploy the corresponding policy π that is estimated as achieving best
performance for group Km, to i′.

D.2 Proof of Bound 3

Rényi divergence. For ϵ ≥ 0, the Rényi divergence for two distribution π and β is defined by [54]

dϵ(π∥β) =
1

ϵ− 1
log2

∑
x

β(x)
(π(x)
β(x)

)ϵ−1

.

[6] denote the exponential in base 2 by dϵ(π∥β) = 2Dϵ(π∥β).

Proof. D̂π,β
Km

= 1
|Im|

∑
i∈Im

(
ωi

∑T
t=1 γ

t−1r
(i)
t −

∑T
t=1 γ

t−1r
(i)
t

)
, with ωi =

ΠT
t=1π(a

(i)
t |s(i)t )/β(a

(i)
t |s(i)t ), can be upper bounded by the variance of importance sam-

pling weights. Denote gi =
∑T

t=1 γ
t−1r

(i)
t . Following [25], since V ar(Ĝ) ≤ E[Ĝ2] (following the

definition of variance),

V ar(D̂π,β
Km

) ≤ ∥g∥2∞
N2

E
[∑

i

(ωi − 1)2
]

=
1

N
∥g∥2∞V ar(ω),

with the last equality following the fact E[ω] = 1. Moreover, V ar(w) = d2(π∥β)− 1 as pointed out
by [6], following the Rényi divergence [54]. Thus, the variance of the estimator V ar(D̂π,β

Km
) is:

V ar(D̂π,β
Km

) ≤ ∥g∥2∞
(d2(π∥β)− 1

N

)
= ∥g∥2∞

(d2(π∥β)
N

− 1

N

)
.

The expression can be related to the effective sample size (ESS) of the original data given the target
policy [41], resulting in

V ar(D̂π,β
Km

) ≤ ∥g∥2∞
( 1

ESS
− 1

N

)
,

which completes the proof.
7Note that D̂π,β

Km=l(s0)
essentially approximates the sum of value difference in (1) over each Im.
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Remark. Note that in the special case that behavior policy being the same as target policy, the bound
evaluates to zero. Moreover, as noted by [25], denote the right-hand side of inequality 3 by V aru(·),
it can be used in each sub-group as a proxy of variance of the estimator in the subgroup, i.e.,

V aru(D̂
π,β
Km

) = ∥gm∥2∞
( 1

ESS(Km)
− 1

|Km|
)
;

here, gm refers to the total return of the trajectories pertaining to the sub-group Km, and ESS(Km)

can be estimated by ESS using ÊSS(Km) =
(
∑

i∈Im
gi)

2∑
i∈Im

g2
i

[49].

D.3 Detailed Formulation of VAE in MDP

The latent prior p(z0) ∼ N (0, I) representing the distribution of the initial latent states (at the
beginning of each PST in the set T g), where I is the identity covariance matrix.

Encoder. qη(zt|st−1, at−1, st) is used to approximate the posterior distribution
pξ(zt|st−1, at−1, st) =

pξ(zt−1,at−1,zt,st)∫
zt∈Z p(zt−1,at−1,zt,st)dzt

, where Z ⊂ Rm and m is the dimension.

Given that qη(z0:T |s0:T , a0:T−1) = qη(z0|s0)
∏T

t=1 qη(zt|zt−1, at−1, st), both distributions
qη(z0|s0) and qη(zt|zt−1, at−1, st) follow diagonal Gaussian, where mean and diagonal covari-
ance are determined by multi-layer perceptrons (MLPs) and long short-term memory (LSTM),
with neural network weights η. Thus, one can infer zη0 ∼ qη(z0|s0), zηt ∼ qη(zt|hη

t ), with
hη
t = fη(h

η
t−1, z

η
t−1, at−1, st) where fη represents LSTM layer and hη

t represents LSTM recurrent
hidden state.

Decoder. pξ(zt, st, rt−1|zt−1, at−1) is used to sample new trajectories. Given
pξ(z1:T , s0:T , r0:T−1|z0, ξ) =

∏T
t=0 pξ(st|zt)

∏T
t=1 pξ(zt|zt−1, at−1)pξ(rt−1|zt), where at’s

are determined following the behavioral policy β, distributions pξ(st|zt) and pξ(rt−1|zt) follow
diagonal Gaussian with mean and covariance determined by MLPs and pξ(zt|zt−1, at−1) follows
diagonal Gaussian with mean and covariance determined by LSTM.

Thus, the generative process can be formulated as, i.e., at initialization, zξ0 ∼ p(z0), s
ξ
0 ∼ pξ(s0|zξ0),

a0 ∼ β(a0|sξ0); followed by zξt ∼ pξ(h̃
ξ
t ), r

ξ
t−1 ∼ pξ(rt−1|zξt ), s

ξ
t ∼ pξ(st|zξt ), at ∼ β(at|sξt ), with

h̃ξ
t = gξ[fξ(h

ξ
t−1, z

ξ
t−1, at−1)] where gξ represents an MLP.

Training objective. The training objective for the VAE in MDP is to maximize the evidence lower
bound (ELBO), which consists of the log-likelihood of reconstructing the states and rewards, and
regularization of the approximated posterior, i.e.,

ELBO(η, ξ) = Eqη

[∑T

t=0
log pξ(st|zt) +

∑T

t=1
log pξ(rt−1|zt)

−KL
(
qη(z0|s0)||p(z0)

)
−
∑T

t=1
KL

(
qη(zt|zt−1, at−1, st)||pξ(zt|zt−1, at−1)

)]
.

(4)

The proof of Equation 4 is provided in Appendix D.4.

More discussions on trajectory augmentations. Latent-model-based models such as VAE have
been commonly used for augmentation in offline RL, while they general rarely come with error
bounds provided [20, 31, 58]. Prior works have also found that applying generative models to data
augmentation can learn more robust predictors that are invariant especially with subgroup identity [18].
Though generative augmentation models may not perfectly model the subgroup distribution and
introduce artifacts, as noted by [18], we can directly control the deviations of augmentation from
original data with translation or consistency loss as in Equation 4. Our experimental results further
show that off-policy selection can benefit more with combination of augmented samples and raw data
compared to using raw (original) data only.

D.4 Proof of Equation 4

The derivation of the evidence lower bound (ELBO) for the joint log-likelihood distribution can be
found below.
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Proof.

log pβ(s0:T , r0:T−1) (5)

= log

∫
z1:T∈Z

pβ(s0:T , z1:T , r0:T−1)dz (6)

= log

∫
z1:T∈Z

pβ(s0:T , z1:T , r0:T−1)

qα(z0:T |s0:T , a0:T−1)
qα(z0:T |s0:T , a0:T−1)dz (7)

Jensen′s inequality

≥ Eqα [log p(z0) + log pβ(s0:T , z1:T , r0:T−1|z0)− log qα(z0:T |s0:T , a0:T−1)] (8)

=Eqα

[
log p(z0) + log pβ(s0|z0) +

∑T

t=0
log pβ(st, zt, rt−1|zt−1, at−1)

− log qα(z0|s0)−
∑T

t=1
log qα(zt|zt−1, at−1, st)

]
(9)

=Eqα

[
log p(z0)− log qα(z0|s0) + log pβ(s0|z0) +

∑T

t=1
log
(
pβ(st|zt)pβ(rt−1|zt)pβ(zt|zt−1, at−1)

)
−
∑T

t=1
log qα(zt|zt−1, at−1, st)

]
(10)

=Eqα

[∑T

t=0
log pβ(st|zt) +

∑T

t=1
log pβ(rt−1|zt)

−KL
(
qα(z0|s0)||p(z0)

)
−
∑T

t=1
KL

(
qα(zt|zt−1, at−1, st)||pβ(zt|zt−1, at−1)

)]
.

(11)
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E More Experimental Setup

E.1 Training Resources

All experimental workloads are distributed among 4 Nvidia RTX A5000 24GB, 3 Nvidia Quadro
RTX 6000 24GB, and 4 NVIDIA TITAN Xp 12GB graphics cards.

E.2 Implementations and Hyper-parameters

For FQE, as in [30], we train a neural network to estimate the values of the target polices π ∈ Π
by bootstrapping from the learned Q-function. For DualDICE, we use the open-sourced code in its
original paper. For MAGIC, we use the implementation of [71]. For trajectory augmentation, for
the components involving LSTMs, which include qα(zt|zt−1, at−1, st) and pβ(zt|zt−1, at−1), their
architecture include one LSTM layer with 64 nodes, followed by a dense layer with 64 nodes. All
other components do not have LSTM layers involved, so they are constituted by a neural network with
2 dense layers, with 128 and 64 nodes respectively. The output layers that determine the mean and
diagonal covariance of diagonal Gaussian distributions use linear and softplus activations, respectively.
The ones that determine the mean of Bernoulli distributions (e.g., for capturing early termination
of episodes) are configured to use sigmoid activations. For training, in subgroups with sample size
greater than 200, the maximum number of iteration is set to 1000 and minibatch size set to 64, and
200 and 4 respectively for subgroups with sample size less than or equal to 200. Adam optimizer
is used to perform gradient descent. To determine the learning rate, we perform grid search among
{1e − 4, 3e − 3, 3e − 4, 5e − 4, 7e − 4}. Exponential decay is applied to the learning rate, which
decays the learning rate by 0.997 every iteration. For OPE, the model-based methods are evaluated by
directly interacting with each target policy for 50 episodes, and the mean of discounted total returns
(γ = 0.9) over all episodes is used as estimated performance for the policy.

E.3 OPE Standard Evaluation Metrics

Absolute error The absolute error is defined as the difference between the actual value and the
estimated value of a policy:

AE = |V π − V̂ π| (12)

where V π represents the actual value of the policy π, and V̂ π represents the estimated value of π.

Mean absolute error (MAE) The MAE is defined as the average value of absolute error across |Π|
target (evaluation) policies:

MAE =
1

|Π|
∑
π∈Π

AE(π). (13)
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: To the best of our knowledge, we are the first work that targeted and solved
a practical challenge often encountered in off-policy selection (OPS) when deploying
RL policies to new human arrivals in practical human-centric systems (HCSs). We have
provided an algorithm and theoretical analysis to address the practical problem of interest,
with extensive empirical justifications as provided by two human-centric environments
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Guidelines:
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made in the paper.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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and how they scale with dataset size.
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Answer: [Yes]

Justification: Please see Section 2 and Appendix D.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section 3 and Appendices A, B.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please see Supplementary Materials. Real-world human data is not publicly
released under IRB protocols.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendices A, B, E.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Figures 1, 2 and Table 1.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The assumptions made should be given (e.g., Normally distributed errors).
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the experiments?

Answer: [Yes]

Justification: Please see Appendix E.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]

Justification: The authors make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [Yes]

Justification: Please see Appendix C.
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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11. Safeguards
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image generators, or scraped datasets)?
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The authors provided the details of the code as part of their submissions via
structured templates.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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asset is used.
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14. Crowdsourcing and Research with Human Subjects
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Answer: [Yes]

Justification: Please see Appendices A, C.
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developing more robust medical interventions for patients.
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applicable), such as the institution conducting the review.
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