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Abstract

Scaling has been a critical factor in improving model performance and generalization
across various fields of machine learning. It involves how a model’s performance
changes with increases in model size or input data, as well as how efficiently computa-
tional resources are utilized to support this growth. Despite successes in scaling other
types of machine learning models, the study of scaling in Neural Network Interatomic
Potentials (NNIPs) remains limited. NNIPs act as surrogate models for ab initio
quantum mechanical calculations, predicting the energy and forces between atoms
in molecules and materials based on atomic configurations. The dominant paradigm
in this field is to incorporate numerous physical domain constraints into the model,
such as symmetry constraints like rotational equivariance. We contend that these in-
creasingly complex domain constraints inhibit the scaling ability of NNIPs, and such
strategies are likely to cause model performance to plateau in the long run. In this
work, we take an alternative approach and start by systematically studying NNIP scal-
ing properties and strategies. Our findings indicate that scaling the model through at-
tention mechanisms is both efficient and improves model expressivity. These insights
motivate us to develop an NNIP architecture designed for scalability: the Efficiently
Scaled Attention Interatomic Potential (EScAIP). EScAIP leverages a novel multi-
head self-attention formulation within graph neural networks, applying attention at
the neighbor-level representations. Implemented with highly-optimized attention
GPU kernels, EScAIP achieves substantial gains in efficiency—at least 10x speed up
in inference time, 5x less in memory usage—compared to existing NNIP models. ES-
cAIP also achieves state-of-the-art performance on a wide range of datasets including
catalysts (OC20 and OC22), molecules (SPICE), and materials (MPTrj). After train-
ing EScAIP, we test its ability to learn rotational equivariance by predicting forces on
new, unseen atomistic systems before and after rotation. The model’s force predic-
tions exactly match the rotated forces, suggesting that it has precisely learned rota-
tional equivariance. Finally, we emphasize that our approach should be thought of as
a philosophy rather than a specific model, representing a proof-of-concept towards de-
veloping general-purpose NNIPs that achieve better expressivity through scaling, and
continue to scale efficiently with increased computational resources and training data.

1 Introduction

In recent years, the principle of scaling model size, data, and compute has become a key factor for
improving performance and generalization in machine learning (ML), across fields from natural
language processing (NLP) [Kaplan et al., 2020] to computer vision (CV) [Dosovitskiy et al., 2021,
Zhai et al., 2022]. Scaling in ML is, in a large part, defined by the ability to best exploit GPU computing
capabilities. This typically involves efficiently increasing model sizes to large parameter counts, as
well as optimizing model training and inference to be optimally compute-efficient.
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Parallel to these developments, ML models have also been rapidly developing for atomistic simulation,
addressing problems in drug design, catalysis, materials, and more [Deringer et al., 2019, Unke
et al., 2021]. Among these, machine learning interatomic potentials, and particularly neural network
interatomic potentials (NNIPs), have gained popularity as surrogate models for computationally
intensive ab initio quantum mechanical calculations like density functional theory. NNIPs are designed
to predict the energies and forces of molecular systems with high efficiency and accuracy, allowing
downstream tasks such as geometry relaxations or molecular dynamics to be carried out on systems
that would be intractable to simulate directly with density functional theory.

Current NNIPs are predominantly based on graph neural networks (GNNs). The atomistic system is
represented as a graph, where nodes correspond to atoms and edges representing interactions between
atoms. Many effective models in this field have increasingly tried to embed physically-inspired
constraints into the model, often justified by the belief that these constraints improve accuracy and data
efficiency. Common constraints include incorporating predefined symmetries into the NN architecture,
such as rotational equivariance, as well as using complex input feature sets.

NNIP models that integrate symmetry constraints [Batzner et al., 2022, Batatia et al., 2022, Liao
et al., 2024] often rely on computationally intensive tensor products of rotation order L [Geiger
and Smidt, 2022] to maintain rotational equivariance. Although recent advancements have reduced
the computational complexity of these operations [Passaro and Zitnick, 2023a, Luo et al., 2024],
the remaining computational overhead still significantly limits their scalability. Other approaches
[Gasteiger et al., 2020a, 2021, 2022] use basis expansions of the edge directions, angles, and dihedrals
as features. Generally, incorporating these constraints tends to be compute-inefficient. As a result,
many of the models in the field remain highly-constrained and small, despite the availability of larger
datasets [Chanussot et al., 2021, Jain et al., 2013] and more computational resources.

We contend that these increasingly complex domain constraints inhibit the scaling ability of NNIPs,
and such strategies are likely to plateau over time in terms of model performance. As the scale of
the models increase, we hypothesize that imposing these constraints hinders the learning of effective
representations, restricts the model’s ability to generalize, and impedes efficient optimization. Many
of these feature-engineered approaches are not optimized for efficient parallelization on GPUs, further
limiting their scalability and efficiency, especially when applied to larger systems.

In many other fields of ML, general-purpose architectures that best exploit computing capabilities
outperform models with handcrafted, domain-specific constraints [Dosovitskiy et al., 2021, Zhai et al.,
2022]. These observations motivate us to ask: How can we develop principled methods and design
choices that enable the creation of general-purpose neural network interatomic potentials that
scale effectively with increased computational resources and training data?

To answer this question, we conduct an initial ablation study to identify which components in NNIPs
are most conducive to scaling. In NNIPs with built-in rotational equivariance, it is commonly believed
that increasing the rotation order (L) improves model performance, even though it incurs additional
computational cost. However, our investigations show that increasing the rotation order also adds
more parameters to the model, and NNIPs are not always adjusted to account for this difference in
parameter count. Our investigations also show that how parameters are added to the model is critical,
as different types of parameter increases can differently impact the model’s expressivity. We find that
increasing the parameters of other components of the model besides the rotation order—–particularly
those involved in attention mechanisms—–greatly improves model performance.

Based on these insights, we develop the Efficiently Scaled Attention Interatomic Potential (EScAIP),
an NNIP architecture explicitly designed for scaling by incorporating highly optimized attention
mechanisms. To the best of our knowledge, our model is the first to leverage attention mechanisms
on the neighbor representations of atoms rather than only the nodes, resulting in more expressivity.
We also leverage advancements in attention mechanisms [Lefaudeux et al., 2022], which have
computational and memory efficiencies for scaling on large datasets.

Our model achieves the best performance on a wide range of chemical applications, including the
top performance on the Open Catalyst 2020 (OC20), Open Catalyst 2022 (OC22), SPICE molecules,
and Materials Project (MPTrj) datasets. It also demonstrates a 10x speed up in inference time and 5x
less in memory usage compared to existing NNIP models. To evaluate how well EScAIP has learned
rotational equivariance, on a held-out validation set not seen during training, we 1) predict forces on a
set of atomistic systems (A), 2) rotate the atomistic systems and predict forces (B), and then 3) compute
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Figure 1: Efficiency, performance, and scaling comparisons between EScAIP and baseline models
on the Open Catalyst dataset (OC20). Force MAE (meV/Å ↓) vs. Inference Speed (Sample/Sec ↑)
and Force MAE vs. Memory (GB/Sample ↓) is reported. Results with Energy MAE can be found
in the Appendix Fig. 7. EScAIP achieves better performance with smaller time and memory cost.

the cosine similarity between the force predictions (B) and the rotated version of force predictions
(A). After training EScAIP on different datasets, we find that EScAIP accurately predicts the forces
on the rotated systems, as indicated by high cosine similarity scores (≥ 0.999). This suggests that
it has successfully learned and captured rotational equivariance. We also provide evidence that EScAIP
scales well with compute, and is designed in such a way that it will further improve in efficiency
as advances in GPU computing continue to increase. Our code and model checkpoints are publicly
available at https://github.com/ASK-Berkeley/EScAIP.

2 Related Works

Neural Network Interatomic Potentials. There have been significant advancements in the devel-
opment of neural network interatomic potentials (NNIPs), and we give a very general overview of the
current state of the field. These models are usually trained to predict the system energy and per-atom
force based on system properties, including atomic numbers and positions. We classify the current class
of models into two categories: (1) models that are based on Group Representation node features, and (2)
models that are based on node features represented by Cartesian Coordinates. In the former, the node fea-
tures are equivariant to different groups acting on the atomic positions, such as rotations and translations.
In the latter, most architectures obey basic group symmetries, such as rotation and translation invariance.

• Group Representation Architectures. The first model that used group representation node features
was the Tensor Field Network [Thomas et al., 2018], followed by an improved version, NequIP
[Batzner et al., 2022]. Then, MACE [Batatia et al., 2022] incorporated the Atomic Cluster Expansion
[Drautz, 2019] into the architecture. SCN [Zitnick et al., 2022] used spherical functions to represent
equivariant node features, followed by an efficiency improvement in the tensor products, eSCN
[Passaro and Zitnick, 2023b]. Equiformer [Liao and Smidt, 2022, Liao et al., 2024] incorporated
graph attention into the architecture.

• Cartesian Coordinates Architectures. SchNet [Schütt et al., 2017] is an example of initial work
that only used edge distances as input to maintain invariant node features. DimeNet [Gasteiger et al.,
2020a,b] and GemNet [Gasteiger et al., 2021, 2022] added invariant bond direction feature sets
as input. They designed an output head that maintains rotational equivariance with invariant node
features. TorchMD-Net added attention mechanisms over the atomic graph [Thölke and Fabritiis,
2022, Pelaez et al., 2024]. Another line of work tries to maintain equivariant features in Cartesian
space by explicitly modeling spherical functions [Frank et al., 2022, Bekkers et al., 2024, Chen and
Ong, 2022, Cheng, 2024, Haghighatlari et al., 2022, Liu et al., 2022].

Datasets for NNIP training. There has also been a growing focus in the NNIP domain on generating
larger datasets with quantum mechanical simulations, and using this to train models. These datasets
span domains such as molecules [Eastman et al., 2023, Smith et al., 2020, Anstine et al., 2024],
catalysts [Chanussot et al., 2021, Tran et al., 2023], and materials [Barroso-Luque et al., 2024, Yang
et al., 2024, Merchant et al., 2023, Jain et al., 2013, Choudhary et al., 2020].
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Figure 2: Results of ablation study of EquiformerV2 [Liao et al., 2024] on the OC20 2M dataset.
Energy (eV) and force (eV/Å) mean absolute error (MAE) are reported, along with the model’s
parameter counts. The leftmost column shows the original results from [Liao et al., 2024], where
different L had a different number of trainable parameters. We look at scaling parameters through the
attention mechanisms (AT) and spherical channels (SC) for the original L=2 and L=4 models, such
that the number of parameters is approximately equal to the original L=6 model. Scaling parameters
in different ways affects the overall energy and forces error, and increasing attention parameters is
particularly effective in improving model performance (More AT). We also modify the architecture
to be invariant (L=0), allowing us to examine the effects of excluding rotational equivariance while
controlling for the number of parameters (Invariant BOO). After controlling for parameter counts,
many of the models have comparable error to the original L=6 model.

Constrained vs. Unconstrained Architectures. There has been a trend of incorporating
physically-inspired constraints into NNIP model architectures, such as all Group Representation
Architectures that incorporate symmetry constraints into the model. However, there have been other
lines of work that do not try to build in symmetry directly into the NN, and instead either try to
“approximate” the symmetry [Pozdnyakov and Ceriotti, 2023, Wang et al., 2022, Finzi et al., 2021]
or learn the symmetry via data augmentation techniques [Puny et al., 2022, Duval et al., 2023].

3 Investigation on How to Scale Neural Network Interatomic Potentials

We systematically investigate strategies for scaling neural network interatomic potential (NNIP)
models through an ablation study. We examine how higher-order symmetries (rotation order L) impact
scaling efficiency and identify the most effective methods for increasing model parameters (§3.1). We
also assess the importance of incorporating directional bond features (§3.2). We conduct experiments
using a leading NNIP architecture, the EquiformerV2 model [Liao et al., 2024], on the Open Catalyst
2020 (OC20) Dataset [Chanussot et al., 2021] 2M split to evaluate the performance of different scaling
strategies.

3.1 Optimal Components for Scaling Neural Network Interatomic Potentials

A prevalent approach to improve the capability of NNIP models with group representation features
is to increase the order of representations (L). Liao et al. [2024] did a study on the EquiformerV2
model, varying L to examine its impact on model performance. However, they did not control for
the total number of trainable parameters in the model. This variation introduces discrepancies that
can confound the true effect of L on the model’s performance.

Ablation Study Settings. To clarify the impact of increasing L on model performance and
determine the most effective strategy for increasing parameters in NNIP models, we conduct a
parameter-controlled experiment using the EquiformerV2 model on the OC20 S2EF 2M dataset. We
standardize the number of trainable parameters across different values of L to isolate the effects of
increasing L, and systematically add parameters to different components of the original L=2 and
L=4 EquiformerV2 models from Liao et al. [2024]. Our approach targets four distinct configurations:
increasing parameters solely in the attention mechanisms (AT), solely in the spherical channels that
act on all group representations in the NN (SC), evenly across both attention mechanisms and spherical
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channels (AT + SC), and a configuration where spherical channels are reduced while significantly
boosting attention parameters (More AT).

Results of Ablation Study. The comparative analysis reveals a clear hierarchy in performance gains
with different parameter scaling strategies. The More AT configuration yields the highest performance
improvement, followed by AT, AT + SC, and SC. The results, summarized in Fig. 2, show that once
the number of parameters across models are controlled, many of the models have comparable error to
the original L=6 model. Increasing the parameters of the attention mechanisms is most beneficial and
provides more substantial improvements than simply adding more parameters across all components.

3.2 Bond Directional Features

We explore what the most minimal representations are of the atomistic system to enable the model
to learn a scalable, data-driven feature set, and find that incorporating bond directional information
is useful for NNIP models. As opposed to other domains, such as social networks, the edges (or
bonds) in molecular graphs possess distinct geometric attributes, i.e., pairwise directions. However,
the raw value of the bond direction changes with the rotation and translation of the molecule, making
it challenging to directly utilize these features in NNIP models.

We propose a straightforward and data-driven approach to embed the bond directional information.
To avoid the computational inefficiency of taking a tensor product, we aim to use the simplest possible
representation of bond direction that is rotationally invariant. Inspired by Steinhardt et al. [1983],
we use an embedding of the Bond-Orientational Order (BOO) to represent the directional features.
Formally, for a node v, the BOO of order l is,

BOO(l)(v)=

√√√√√ l∑
m=−l

4π

2l+1

∣∣∣∣∣∣ 1nv

∑
u∈Nei(v)

Y
(l)
m (d̂uv)

∣∣∣∣∣∣
2

,

BOO(v)=Concat
(
{BOO(l)(v)}Ll=0

)
,

(1)

where d̂uv is the normalized bond direction vector between node v and u, nv is the number of neighbors
of v, Nei(v) is the neighbors of v, Y (l)

m is the spherical harmonics of order l and degree m. This can be
interpreted as the minimum-order rotation-invariant representation of the l-th moment in a multipole
expansion for the distribution of bond vectors ρbond(n) across a unit sphere. In other words, BOO is
the simplest way to encode the neighborhood directional information in a rotationally invariant manner.
The BOO features BOO(v)∈RL+1 for a node v is the concatenation of BOO(v)(l). In theory, the
BOO feature contains all the directional information of the neighborhood, and the embedding network
can learn to extract such information.

Testing the bond-orientational order (BOO) features. We conduct a study to test the BOO
features. We modify the EquiformerV2 model to be L = 0 and replace the spherical harmonics
directional features with embeddings of the BOO features. The results are in Fig. 2. The L=0 model
achieves comparable results with the L=6 model. This finding suggests that the BOO features are
a straightforward and effective way to incorporate bond directional information in NNIP models, and
that it is also possible to learn additional information solely through scaling.

4 Efficiently Scaled Attention Interatomic Potential (EScAIP)

We introduce a new NNIP architecture, Efficiently Scaled Attention Interatomic Potential (EScAIP),
which leverages highly optimized self-attention mechanisms for expressivity, with design choices
centered around scalability and efficiency. To avoid costly tensor products, we operate on scalar
features that are invariant to rotations and translations. This enables us to take advantage the optimized
self-attention mechanisms from natural language processing, making the model substantially more
time and memory efficient than equivariant group representation models such as EquiformerV2 [Liao
et al., 2024]. An illustration of our model is shown in Fig. 3. We describe the key components of the
model and the motivation behind their design:

Input Block. The input to the model is a radius-r graph representation of the molecular system. We
use three attributes from the molecular graph as input: atomic numbers [Zitnick et al., 2022], Radial
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Figure 3: Illustration of the Efficiently Scaled Attention Interatomic Potential (EScAIP) model
architecture. The model consists of B graph attention blocks (dashed box), each of which contains
a graph attention layer, a feed forward layer, and two readout layers for node and edge features. The
concatenated readouts from each block are used to predict per-atom forces and system energy.

Basis Expansion (RBF) of pairwise distances [Schütt et al., 2017], and Bond Order Orientation (BOO)
features from §3.2. The atomic numbers embeddings are used to encode the atom type information,
while the RBF and BOO embeddings are used to encode the spatial information of the molecular
system. These input attributes are the minimal representations of the system, enabling the model to
learn a scalable, data-driven feature set. We also note that the attributes can be pre-computed, requiring
minimal computational cost. The input features are then passed through a feed forward neural network
(FFN) to produce the initial edge and node features.

Graph Attention Block. The core component of the model is the graph attention block, illustrated
in Fig. 4. It takes node features and molecular graph attributes as input. All the features are projected
and concatenated into a large message tensor of shape (N,M,H), where N is the number of nodes,
M is the max number of neighbor, and H is the message size. The message tensor is then processed
by a multi-head self-attention mechanism. The attention is parallelized over each neighborhood, where
M is the sequence length. By using customized Trition kernels [Tillet et al., 2019, Lefaudeux et al.,
2022], the attention mechanism is highly optimized for GPU acceleration. The output of the attention
mechanism is aggregated back to the atom level. The aggregated messages are then passed through
the node-wise Feed Forward Network (FFN) to produce the output node features. To the best of our
knowledge, this attention mechanism is unique because it acts on a neighborhood level, which is more
expressive than the graph attention architectures that only act on the node level.

Readout Block. We use two readout layers for each graph attention block, which follows GemNet-OC
[Gasteiger et al., 2022]. The first readout layer takes in the unaggregated messages from the graph atten-
tion block and produces edge readout features. The second readout layer takes in the output node fea-
tures from the node-wise FFN and produces node readout features. The node and edge readout features
from all graph attention blocks are concatenated and passed into the output block for output prediction.

Output Block. The output block takes the concatenated readout features and predicts the per-atom
forces and system energy. The energy prediction is done by an FFN on the node readout features. The
force prediction is divided into two parts: the force magnitude is predicted by an FFN on the node
readout features, and the force direction is predicted by a transformation of the unit edge directions
with an FFN on the edge readout features. As opposed to GemNet [Gasteiger et al., 2022], the
transformation is not scalar but vector-valued. Thus, the predicted force direction is not equivariant
to rotations of the input data. In our experiments, we found this symmetry-breaking output block made
the model perform better. The reason could be that this formulation has more degrees of freedom and
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Figure 4: Detailed illustration of the graph attention block. The input attributes are projected and
concatenated into a large message tensor. The tensor is fed into an optimized multi-head self-attention
computation, where the max number of neighbors dimension is the sequence length dimension.

Table 1: EScAIP performance on the OC20 All+MD, OC20 2M, and OC22 datasets. The results are
reported in Energy (eV) and Force (eV/Å) mean absolute error (MAE). EScAIP generally achieves
the best Energy and Force MAE among all current models. Due to its efficiency, EScAIP requires
less training time compared to the other models.

Validation Test

Dataset Model # of Energy MAE Force MAE Energy MAE Force MAE
Parameters (meV) ↓ (meV/Å) ↓ (meV) ↓ (meV/Å) ↓

O
C

20
A

ll+
M

D

GemNet-OC-L-F 216M 252 19.99 241 19.01
eSCN L=6 K=20 200M 243 17.09 228 15.60
EquiformerV2 (λE=4) 31M 232 16.26 228 15.50
EquiformerV2 (λE=2) 153M 230 14.60 227 13.80
EquiformerV2 (λE=4) 153M 227 15.04 219 14.20
EScAIP-Small 83M 229 15.07 233 15.73
EScAIP-Medium 146M 217 12.82 221 13.19
EScAIP-Large 317M 211 12.17 215 12.65

O
C

20
2M

GemNet-dT 31M 358 29.50 - -
GemNet-OC 38M 286 25.70 - -
SCN 126M 279 21.90 - -
eSCN 51M 283 20.50 - -
EquiformerV2 85M 285 20.46 - -
EScAIP-Small 83M 263 20.15 - -
EScAIP-Medium 146M 254 19.08 - -

O
C

22

GemNet-OC 39M - - 707 35.0
EquiformerV2 122M 531 26.79 462 27.1
EScAIP-Medium 146M 514 24.32 473 25.73

so is easier to optimize. We note that though the force direction is initially not equivariant, the trained
model is able to learn this symmetry from the data (See §5.4).

We also note that predicting the force magnitude from node readout features is very helpful for energy
prediction. The reason could be that the energy prediction is a global property of the molecular system,
while the force magnitude is a local property of the atom. By guiding the model towards a fine-grained
force magnitude prediction, the model can learn a better representation of the system, which can in
turn help it predict the system energy more accurately.

5 Experiments

We conduct experiments on a wide range of chemical systems, including catalysts (OC20 and OC22)
§5.1, materials (MPTrj) §5.2, and molecules (SPICE and MD22) §5.3,§B.2.

5.1 Catalysts (OC20 and OC22)

Dataset. We evaluate the performance of our EScAIP model on the Open Catalyst dataset [Chanussot
et al., 2021, Tran et al., 2023], which consists of 172 million systems with 73 atoms on average.
We evaluate on the S2EF task, which is the prediction of system energy and per-atomic force from
atomistic structure.
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Table 2: EScAIP efficiency comparisons with baseline models on the OC20 dataset. All reported
results are measured on NVIDIA V100 32G.

Dataset Model # of Training Speed Training Memory Inference Speed Inference Memory
Parameters (Sample/Sec) ↑ (GB/Sample) ↓ (Sample/Sec) ↑ (GB/Sample) ↓

O
C

20
GemNet-OC 216M 9.44 3.40 23.67 2.31
eSCN L=6 K=20 200M 2.16 6.90 6.3 6.15
EquiformerV2 31M 14.22 1.63 34.55 1.61
EquiformerV2 153M 2.85 6.33 7.92 5.24
EScAIP-Small 83M 35.84 1.23 107.04 1.09
EScAIP-Medium 146M 25.36 1.54 74.77 1.28
EScAIP-Large 312M 12.88 2.78 40.56 2.28
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Figure 5: Inference runtime and memory usage comparison of EScAIP and baseline models on the
OC20 dataset. Mean and standard deviation (shown as error bars) are reported across 16 randomly
sampled batches per batch size. Grey lines indicate the cumulative number of atoms in the batch.
EScAIP not only scales efficiently with batch size, but also exhibits minimal variation in performance
across different batches. All reported results are tested on NVIDIA V100 32G.

Settings. We use three variants of the EScAIP model: Small (83M), Medium (146M), and Large
(317M). The models are trained to predict the energy and forces of each sample (S2EF task). We
train the model on the OC20 All+MD, OC20 2M, and OC22 splits. We evaluate the performance
on the four validation sets and test sets (both have 4M samples in total) and compare the results with
EquiformerV2 [Liao et al., 2024], eSCN [Passaro and Zitnick, 2023b], SCN [Zitnick et al., 2022],
and GemNet-OC [Gasteiger et al., 2022], the best performing models on this dataset.

Results. The results of EScAIP on the Open Catalyst dataset are summarized in Tab. 1, where
EScAIP achieves state-of-the-art performance across all splits: OC20 2M, OC20 All+MD, and OC22.
We note that we exclude models that train with a denoising objective, as we focus on the performance
of the model architecture itself. There is a clear trend that increasing the model size improves the
performance of EScAIP. Notably, even the Small model achieves competitive performance against
other models while remaining significantly more efficient, making it suitable for downstream, practical
applications. More results on the scalability of the EScAIP model can be found in the Appendix B.1.

Efficiency Comparisons. We provide the runtime and memory usage of EScAIP and other baseline
models on the OC20 dataset in Tab. 2. EScAIP is approximately 10x faster and has 5x less memory usage
than an EquiformerV2 [Liao et al., 2024] model of comparable size. Additionally, as shown in Fig. 5, ES-
cAIP scales effectively with batch size while maintaining minimal performance variation across batches.
This consistency is because EScAIP’s input is padded to the maximum system size, enabling efficient use
of PyTorch’s compile feature. These qualities could make EScAIP well-suited for practical applications.

5.2 Materials (MPTrj)

Dataset. We evaluate EScAIP’s performance on the Matbench-Discovery benchmark [Riebesell
et al., 2023], a widely recognized benchmark for assessing models in new materials discovery. The
model is trained on the MPTrj dataset [Deng et al., 2023], which consists of 1.6 million samples. This
approach adheres to the “compliant” setting of the Matbench-Discovery benchmark.
Settings. Given the relatively small dataset size, we use a small version of EScAIP with 45M
parameters. The model is trained to predict the energy, force, and stress of each sample. After training
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Table 3: EScAIP performance on the Matbench-Discovery benchmark. Mean absolute error (MAE)
and Root Mean Squared Error (RMSE) are reported in eV/atom. We only include models trained
without a denoising objective, focusing on the performance of the model architecture itself.

Model F1 ↑ DAF ↑ Precision ↑ Recall ↑ Accuracy ↑ TPR ↑ FPR ↓ TNR ↑ FNR ↓ MAE ↓ RMSE ↓ R2 ↑
MACE 0.669 3.777 0.577 0.796 0.878 0.796 0.107 0.893 0.204 57 101 0.697
SevenNet 0.724 4.252 0.65 0.818 0.904 0.818 0.081 0.919 0.182 48 92 0.75
ORB MPtrj 0.765 4.702 0.719 0.817 0.922 0.817 0.059 0.941 0.183 45 91 0.756
EquiformerV2 0.77 4.64 0.709 0.841 0.926 0.841 0.063 0.937 0.159 42 87 0.778
EScAIP 0.781 4.734 0.724 0.848 0.927 0.847 0.058 0.941 0.152 38 84 0.792

Table 4: EScAIP performance on the SPICE dataset. The results are reported in Energy (meV/atom)
and Force (meV/Å) mean absolute error (MAE).

Model Metric PubChem DES370K DES370K Dipeptides Solvated Water QMugsMonomers Dimers Amino Acids

MACE Force MAE 14.75 6.58 6.62 10.19 19.43 13.57 16.93
Energy MAE 0.88 0.59 0.54 0.42 0.98 0.83 0.45

EScAIP Force MAE 5.86 3.48 2.18 5.21 11.52 10.31 8.74
Energy MAE 0.53 0.41 0.38 0.31 0.61 0.72 0.41

for 100 training epochs, we increase the energy coefficient in the loss function and fine-tune the model
for another 50 epochs. We evaluate the performance on the Matbench-Discovery benchmark and
compare the results with EquiformerV2 [Liao et al., 2024, Barroso-Luque et al., 2024], ORB MPTrj
[Orbital-Materials, 2024], SevenNet [Park et al., 2024], and MACE [Batatia et al., 2023, 2022]—-the
top compliant models on this benchmark. We note that we exclude models that train with a denoising
objective, as we focus on the performance of the model architecture itself1.
Results. The results of EScAIP on the Matbench-Discovery benchmark are summarized in Tab. 3.
EScAIP achieves state-of-the-art performance on this benchmark, outperforming other models. We
note that for this geometry relaxation task, models trained with direct forces predictions can be
effective. We also provide models trained with gradient-based forces, which are better suited for
applications such as constant-energy molecular dynamics simulations.

5.3 Molecules (SPICE)

Dataset. We evaluate the EScAIP model’s performance on the SPICE dataset [Eastman et al., 2023],
which consists of approximately one million molecules across seven different categories. To ensure
comparability, we adopt the same training and evaluation settings as used for the MACE-OFF23 model
[Kovács et al., 2023a].

Settings. We use a smaller EScAIP model with 45M parameters, trained to predict the energy and
forces of each sample. The model’s performance is then evaluated on the different SPICE test datasets
and compared directly with MACE-OFF23 [Kovács et al., 2023a].

Results. A summary of EScAIP’s results on the SPICE dataset is provided in Tab. 4, where it
outperforms MACE-OFF23 in predicting the energy and forces on the different test sets.

5.4 Rotational Equivariance Test and Analysis

Settings. To assess whether EScAIP learns rotational equivariance after training on various datasets,
we design the following procedure: first, we use a held-out validation set that was not seen during
training. We randomly sample a batch from this validation dataset and pass it through the trained
model to obtain a force prediction (A). Next, we rotate the batch by a random angle and obtain a second
force prediction (B) from the model. To quantify rotational equivariance, we calculate the cosine
similarity between prediction (B) and the rotated version of prediction (A). This process is repeated
for 128 batches, and we report the average cosine similarity.

1Based on the ORB technical report orb [2024], it is possible that the ORB MPTrj model result reported here
was pre-trained with a denoising objective.
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Table 5: To analyze rotational equivariance, on atomistic systems unseen during training, we: 1)
predict forces on a set of atomistic systems (A), 2) rotate the atomistic systems and predict forces (B),
and then 3) compute the cosine similarity between the force predictions (B) and the rotated version
of force predictions (A). After training EScAIP on different datasets, we find that the cosine similarity
is consistently ≥0.99, meaning EScAIP is essentially always predicting the rotations correctly.

Dataset OC20 All+MD MPTrj SPICE
# of Params. 83M 146M 312M 45M 45M

Before Training 0.2109 0.2940 0.2132 0.2287 0.2364
After Training 0.9981 0.9987 0.9994 0.9999 0.9999

Results. The results of the rotational equivariance analysis are presented in Tab. 5, and the cosine
similarity is consistently≥0.99. These findings indicate that though EScAIP is not initially rotationally
equivariant, after training it is able to correctly map input system rotations to output system predictions.
This suggests that these symmetries can be effectively learned from the data. We note that for OC20,
where systems consist of a surface and adsorbate, the model is only trained on systems aligned in the
z-direction. However, it accurately predicts forces even when the new systems are rotated in various
other directions as part of our rotational equivariance test.

6 Conclusions

We have investigated scaling strategies for developing neural network interatomic potentials (NNIPs)
on large-scale datasets. Based on our investigations, we introduced a new NNIP architecture, Efficiently
Scaled Attention Interatomic Potential (EScAIP), that leverages highly optimized self-attention
mechanisms for scalability and expressivity. We demonstrated the effectiveness of EScAIP on a
wide range of chemical datasets (OC20, OC22, MPTrj, SPICE) and showed that EScAIP achieves
top performance on these different prediction tasks, while being much more efficient in training and
inference runtime, as well as memory usage. We highlight some important takeaways from our work
and the future of machine learning interatomic potentials more broadly:

The “sweet lesson.” We note that our line of investigation in this work follows some of the general
principles of the bitter lesson [Sutton, 2019]. That is, strategies that focus on scaling and compute
tend to outperform those that try to embed domain knowledge into models. However, in this field,
we prefer to think of this as a “sweet lesson.” Training large, constrained models requires significantly
more computational resources, making this feasible for only a limited number of researchers. Efficient
scaling strategies thus democratize large-scale training and make it accessible to a broader community.

We’re still not giving enough credit to the data. Thus far, much of the effort in the NNIP field
has concentrated on model development. However, atomistic systems are far more complex than the
domain-specific information being embedded into models. Predefined symmetry constraints and hand-
crafted features offer only a simplistic representation of this complexity. A path forward to capture these
complexities is to focus on generating comprehensive datasets, ideally accompanied by relevant evalua-
tion metrics, allowing NNs to learn the rest of the information through gaining expressivity via scaling.

Future of NNIPs. As datasets continue to grow, training models from scratch on small datasets
will likely become unnecessary. While geometric constraints may be beneficial in the very small data
regime (though data augmentation techniques can also help here), leveraging the representation of
a pre-trained large model can serve as a starting point for fine-tuning on smaller datasets. This could
make the very small dataset regime essentially a non-factor in the future, and it is likely that the need
for NNIPs with built-in geometric constraints becomes even less necessary. Beyond focusing on data
generation, other techniques are likely to gain importance in the NNIP domain. These include model
distillation, general training and inference strategies that are model agnostic and can be applied to
any NNIP, and approaches to better connect with experimental results. Finally, more comprehensive
strategies will be important for evaluating NNIP accuracy and utility.
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Figure 6: Force MAE vs.Training Dataset Size for EquiformerV2 ablation study on the OC20 2M
dataset. Slope is fitted by linear regression. We scale the parameters of the original L=2 and L=4
models from Liao et al. [2024] through the attention mechanisms and/or spherical channels, such that
the number of parameters is approximately equal to the original L=6 model. As the training dataset
size increases, the scaled L=2 and L=4 models have a steeper slope, indicating faster performance
improvement with increasing data.

A Additional Details on Investigations

We provide additional details on our investigations from §3.

Results of Ablation Study comparing Force MAE vs. Training Dataset Size. To further
investigate how scaling efficiency varies as a function of training dataset size, we train the parameter-
controlled Equiformer V2 models with different amounts of training data. The results in Fig. 6 show
that the scaled L=2 and L=4 models exhibit a steeper performance improvement (log-log slope)
compared to the original L=6 model. In particular, the More AT configuration (more attention) has
a steeper log-log slope compared to the AT + SC configuration and the original L=6 model. This
suggests that increasing the complexity of the attention mechanisms is a more effective strategy for
scaling with increasing training dataset size, rather than increasing L.

B Additional Details and Results on Experiments

B.1 Catalysts (OC20 and OC22)

To illustrate EScAIP’s scalability, we train the model on varying sizes of training data and model
configurations. The results, shown in Fig. 8, indicate a clear trend: as model and data sizes grow,
EScAIP’s performance continues to improve. We also include results to complement Fig. 1: the same
efficiency, performance, and scaling comparisons between EScAIP and baseline models on the Open
Catalyst dataset for Energy MAE (meV ↓) vs. Inference Speed (Sample/Sec ↑) and Energy MAE vs.
Memory (GB/Sample ↓). The trend is similar to the forces MAE results, and EScAIP achieves better
performance with smaller time and memory cost.

B.2 Large Molecules (MD22)

Dataset. We evaluate the performance of our EScAIP model on the MD22 dataset [Chmiela et al.,
2023], which consists of seven molecular systems with varying sizes. It consists of energy and force
labels calculated from DFT simulations.

Settings. We use an EScAIP model 15M parameters on each system and evaluate the performance
on the test set (train-test split 95:5). The model is compared with MACE [Batatia et al., 2022],
VisNet-LSRM [Li et al., 2024], and sGDML [Chmiela et al., 2023]. We note that there were discrepancy
of results of VisNet-LSRM in the MACE [Kovács et al., 2023b] paper and the VisNet-LSRM [Li
et al., 2024], thus we reported both in the table. We use the same train/validation splits as the baselines
[Chmiela et al., 2023], where the training set is hundreds to thousands of samples, and also apply data
augmentation (randomly rotating each training sample 16 times).
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Figure 7: Efficiency, performance, and scaling comparisons between EScAIP and baseline models
on the Open Catalyst dataset. Energy MAE (meV ↓) vs. Inference Speed (Sample/Sec ↑) and Energy
MAE vs. Memory (GB/Sample ↓) is reported. EScAIP achieves better performance with smaller time
and memory cost.

500k 1M 2M 172M
 All+MD

Training Data Size

15

20

25

30

Fo
rc

e 
M

AE
 (m

eV
/Å

)

EScAIP 45M
EScAIP 83M
EScAIP 146M
EquiformerV2 31M
EquiformerV2 83M
EquiformerV2 134M
EquiformerV2 153M

500k 1M 2M 172M
 All+MD

Training Data Size

225

250

275

300

325

E
ne

rg
y 

M
AE

 (m
eV

)

EScAIP 45M
EScAIP 83M
EScAIP 146M
EquiformerV2 31M
EquiformerV2 83M
EquiformerV2 134M
EquiformerV2 153M

Figure 8: Scaling experiment of EScAIP on OC20. Forces MAE (meV/Å) and Energy (meV) across
4 validation splits are reported. For 500k, 1M, and 2M split, the EScAIP model is trained for 30 epochs;
for All+MD, the EScAIP model is trained for 8 epochs. Force and Energy MAE consistently decreases
as model size and training data size increases.

After we train the model, we also run molecular dynamics (MD) simulations to check the stability
of the potential and evaluate how well the simulation recovers the distribution of interatomic distances,
h(r), in the simulation [Raja et al., 2024, Fu et al., 2023]. We use the simulation setup from Fu et al.
[2023] and run the simulation for 200000 steps (100 ps) using the Langevin integrator with a friction
coefficient of 0.5. The temperature is set to 500 K.

Results. The results of EScAIP on the MD22 dataset are summarized in Tab. 6. EScAIP outperforms
other models in both energy and force prediction, especially for large molecules. The low h(r) error in
the MD simulation also indicates that the model is able to capture this observable accurately. Interest-
ingly, MD22 is not a particularly large dataset: the training dataset sizes are in the thousands. Despite
this, a scalable architecture with high parameter counts is still able to achieve good performance.
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Table 6: EScAIP performance on the MD22 dataset. The results are reported in Energy (meV/atom),
Force (meV/Å) and h(r) (unitless) mean absolute error (MAE).

Metric Tetra- Fatty Tetra- Nucleic acid Nucleic acid Buckyball Double-walled
peptide acid saccharide (AT-AT) (AT-AT-CG-CG) catcher nanotube

# of Atoms 42 56 87 60 118 148 370

sGDML Energy 0.40 1.0 2.0 0.52 0.52 0.34 0.47
Force 34 33 29 30 31 29 23

MACE Energy 0.064 0.102 0.062 0.079 0.058 0.141 0.194
Force 3.8 2.8 3.8 4.3 5.0 3.7 12.0

VisNet-LSRM Energy 0.080 0.058 0.044 0.055 0.049 0.124 0.117
(MACE) Force 5.7 3.6 5.0 5.2 8.3 11.6 28.7

VisNet-LSRM Energy 0.068 0.068 0.053 0.056 0.039 - -
(Paper) Force 3.9 2.5 3.3 3.4 4.6 - -

EScAIP
Energy 0.053 0.052 0.041 0.062 0.042 0.112 0.095
Force 3.3 3.2 3.1 3.8 4.3 2.5 8.1
h(r) 0.07 0.09 0.11 0.13 0.15 0.05 0.21
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided
a proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are detailed in the results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss some limitations in §6.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have a theoretical derivation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide all details of our method and a schematic.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: All datasets are available on Github. We also provide all code and model
checkpoints.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Yes, we provide this in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to computational cost, we are not able to provide error bars for every
experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Yes, we provide computational details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed this and the research conforms to this code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, this is also discussed in the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is not relevant to this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite the relevant datasets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we provide a new model and include implementation details.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t have this.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve this.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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