
Fully Distributed, Flexible Compositional Visual
Representations via Soft Tensor Products

Bethia Sun∗ Maurice Pagnucco Yang Song
School of Computer Science and Engineering

UNSW Sydney

Abstract

Since the inception of the classicalist vs. connectionist debate, it has been argued
that the ability to systematically combine symbol-like entities into compositional
representations is crucial for human intelligence. In connectionist systems, the
field of disentanglement has gained prominence for its ability to produce explic-
itly compositional representations; however, it relies on a fundamentally symbolic,
concatenative representation of compositional structure that clashes with the contin-
uous, distributed foundations of deep learning. To resolve this tension, we extend
Smolensky’s Tensor Product Representation (TPR) and introduce Soft TPR, a rep-
resentational form that encodes compositional structure in an inherently distributed,
flexible manner, along with Soft TPR Autoencoder, a theoretically-principled archi-
tecture designed specifically to learn Soft TPRs. Comprehensive evaluations in the
visual representation learning domain demonstrate that the Soft TPR framework
consistently outperforms conventional disentanglement alternatives – achieving
state-of-the-art disentanglement, boosting representation learner convergence, and
delivering superior sample efficiency and low-sample regime performance in down-
stream tasks. These findings highlight the promise of a distributed and flexible
approach to representing compositional structure by potentially enhancing align-
ment with the core principles of deep learning over the conventional symbolic
approach.

1 Introduction

Compositional structure, capturing the property of being decomposable into a set of constituent parts,
permeates numerous aspects of our world – from the recursive application of syntax in language, to
the parsing of richly complex visual scenes into their constituent parts. Given this ubiquity, it is natural
to seek deep learning representations that also embody compositional structure. Indeed, empirical
evidence demonstrates a multitude of benefits conferred by explicitly compositional representations,
including increased interpretability [10 , 12], reduced sample complexity [30 , 33], increased fairness
[20 , 25 , 41], and improved performance in out-of-distribution generalisation [33 , 48 , 50].

We consider the following, intuitive notion of compositional representations. A representation of
compositionally-structured data is a compositional representation if its structure explicitly reflects the
constituency structure of the represented data [49]. In the visual representation learning domain, data
is clearly compositionally-structured, as images can be decomposed into a set of constituent factors
of variation (FoVs), e.g., {magenta floor,orange wall, aqua object colour, oblong object shape}
for the image in Figure 1 .

∗Correspondence to: bethia.sun@unsw.edu.au

Code is available at: https://github.com/gomb0c/soft_tpr/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:bethia.sun@unsw.edu.au

A widely explored framework for learning explicitly compositional representations is that of dis-
entanglement. We adopt the conventional [5 , 25 , 33 , 43], intuitive definition of a disentangled
representation, which states a representation, ψ(x), is disentangled if each data constituent (FoV)
can be mapped onto a distinct dimension or contiguous group of dimensions in ψ(x), effectively
establishing a 1-1 correspondence between FoVs and distinct representational parts [43]. Framed
in this way, it is clear that disentangled representations explicitly encode the data’s constituency
structure and are thus, compositional representations by nature. The majority of state-of-the-art
disentanglement approaches use a variational autoencoder backbone, and rely on weak supervision
[13 , 22 , 31 , 33 , 35], or a penalisation of the aggregate posterior

∫
q(z|x)p(x)dx [10 , 14 , 17 , 24 , 26 ,

 32] to promote disentanglement. More recent approaches depart from the restrictive assumptions
of a variational framework, and instead use standard autoencoding [47], or energy-function based
optimisation [36], with additional inductive biases to encourage disentanglement. Despite their
methodological diversity, disentanglement methods share a unifying principle: by enforcing the 1-1
correspondence between FoVs and distinct “slots” in the representation, they produce compositional
representations as a dimension-wise concatenation of scalar-valued or vector-valued FoV tokens
[10 , 13 , 14 , 17 , 22 , 24 , 26 , 31 , 32 , 33 , 35 , 36 , 47], as illustrated in Figure 1 a. This design utilises a
fundamentally localist encoding scheme, where discrete parts of the representation are exclusively
dedicated to encoding single FoVs, paralleling symbolic representations, in which discrete repre-
sentational slots are occupied by individual symbols – e.g., the symbols {‘c’, ‘a’, ‘t’} in the word
‘cat’. We theorise that this inherently symbolic method, offering a localist encoding of compositional
structure, may be misaligned with the continuous, distributed nature of deep learning models for the
following reasons (see A.3 for further details):

1. Gradient Flow and Learning: Symbolic compositional representations utilise a localist en-
coding approach, assigning each FoV to a unique, non-overlapping subset of the dimensions
of the representation. This modular separation may introduce practical misalignments with
gradient-based optimisation. By restricting each FoV to its own slot, gradients for one FoV
are confined to a set of designated dimensions, limiting the smooth propagation of gradients
globally across all dimensions of the representation. Consequently, updates to a single FoV
provide minimal feedback to other FoVs, hindering the model’s ability to jointly refine
interdependent components. Furthermore, the localist encoding – where each FoV occupies
a small, disjoint subset of the total dimensions – can induce abrupt, discontinuous shifts
in the representation when transitioning between FoV updates, potentially complicating
convergence.

2. Representational Expressivity: The localist encoding inherent in symbolic compositional
structures, where each FoV is assigned a distinct subset of the overall dimensions, may
constrain practical expressiveness. Specifically, confining each of the n FoVs to a subset
of size n/d within a d-dimensional representation causes each FoV to underutilise the full
capacity of the d-dimensional space, potentially limiting the richness and flexibility of the
learned representations.

3. Robustness to Noise: By confining each FoV to a small, non-overlapping subset of dimen-
sions, symbolic compositional representations become highly vulnerable to dimension-wise
noise. Even slight perturbations in a single dimension can significantly impair the repre-
sentation of the corresponding FoV, as there is no overlapping or redundant encoding to
mitigate such disruptions.

Critically, we hypothesise that this potential incompatibility between symbolic, localist representations
and the distributed, continuous nature of deep learning results in suboptimal behaviour in models
that learn or use these representations. To overcome these limitations, we are motivated to pursue an
inherently distributed approach to representing compositional structure. Instead of concatenating
discrete slots (FoV tokens) dimension-wise to form the compositional representation, an inherently
distributed approach continuously combines densely encoded FoVs within a unified vector space. This
design allows information from each FoV to be smoothly interwoven throughout all dimensions of the
representation, as illustrated in Figure 1 b, potentially resulting in smoother gradient flow, enhanced
expressivity, and heightened robustness to noise. By reconciling the demand for representations that
are explicitly compositional with the continuous, distributed nature of deep learning, distributed
compositional representations offer a compelling alternative to traditional symbolic, slot-based
paradigms.

2

Floor colour

Object colour

Wall colour

Factors of variation Compositional representations
a) b)

Object size

Orientation

Object shape

TPR vs Soft TPR
c)

Figure 1: (a) Disentangled representations can be conceptualised as a concatenation of FoV tokens (coloured
blocks), enforcing a symbolic, string-like compositional structure, where each FoV is allocated to a discrete
slot in the representation. We instead, consider a distributed representation of compositional structure, (b),
where information from densely encoded FoV (first 6 waves) are continuously combined together to form the
representation, ψ(x) (in red), effectively distributing the information from multiple FoVs into a single dimension
of ψ(x). (c) Only a subset of points (stars) in the underlying representational space (rainbow manifold) satisfy
the TPR specification. The Soft TPR relaxes this, capturing larger, continuous regions of the underlying
representational space (the translucent circles), while approximately preserving the TPR’s key properties.

Pioneered by Smolensky, the Tensor Product Representation [3] is a specific representational form
that encodes compositional structure in an inherently distributed manner. At the crux of it, TPRs are
formed by continuously blending representational components together into the overall representation,
in a manner analogous to superposing multiple waves together to produce a complex waveform,
as illustrated in Figure 1 b. For a representation to qualify as a TPR, it must adhere to a highly
specific mathematical form, which confers upon the TPR valuable structural properties (elaborated
on in Section 3.2), but also imposes two limitations (see B.1 for further details). First, as depicted
by the stars in Figure 1 c, only a discrete subset of points in the underlying representational space,
Ṽ , satisfies the stringent mathematical criteria to qualify as TPRs. Consequently, to learn TPRs,
representation learners must map from the data manifold onto this discrete subset, which constitutes
a highly constrained and inherently challenging learning task. Second, the TPR specification enforces
a strict, algebraic definition of compositional structure, limiting the TPR’s ability to flexibly represent
ambiguous, real-world data which is often quasi-compositional, only approximately adhering to some
rigid, formal definition. Historically, these limitations have confined TPR learning to formal domains
characterised by explicit, algebraic structure – as evidenced by the near exclusive deployment of
TPRs in language [19 , 23 , 28 , 34 , 52] – and, to contexts where strong supervision from highly
structured downstream tasks is available to steer the representation learning process [23 , 28 , 38 ,

 51]. To negate these drawbacks and extend distributed compositional representations to weakly
supervised, non-formal domains, we propose Soft TPR, which can be thought of as a continuous
relaxation of the traditional TPR, as illlustrated by the translucent circular regions in Figure 1 c. At
its core, the Soft TPR is designed to promote representational flexibility and ease of learning while
simultaneously preserving the structural integrity of the traditional TPR. We additionally introduce
Soft TPR Autoencoder, a theoretically-principled weakly-supervised architecture for learning Soft
TPRs, used to operationalise the Soft TPR framework in the visual representation learning domain.

Our main contributions are threefold: i) We propose a novel compositional representation learning
framework, introducing the distributed, flexible Soft TPR compositional form, alongside a dedicated,
weakly-supervised architecture, Soft TPR Autoencoder, for learning this form. ii) Our framework
is the first to learn distributed compositional representations in the non-formal, less explicitly
algebraic domain of vision. iii) We empirically affirm the far-reaching benefits produced by the Soft
TPR framework, demonstrating that Soft TPRs achieve state-of-the-art disentanglement, accelerate
representation learner convergence, and provide downstream models with enhanced sample efficiency
and superior low-sample regime performance.

2 Related Work

Disentanglement: In aiming to produce explicitly compositional representations without strong
supervision, our work shares the same objective as disentangled representation learning. Prior to the
highly influential work of [25] which proved the impossibility of learning disentangled representations
without supervision or other inductive biases, disentangled representations were learnt in a completely
unsupervised fashion [8 , 10 , 14 , 17 , 24 , 26 , 37]. Our use of weak supervision is inspired by the work
[13 , 22 , 31 , 33 , 35] relating to this highly influential impossibility result. In particular, we leverage
the type of weak supervision termed ‘match pairing’ [35], where pairs, (x, x′), differing in values
for a subset of known FoVs are presented to the model, to incentivise disentanglement. Our work,

3

however, fundamentally diverges from all disentanglement work we are aware of, by adopting an
inherently distributed representation of compositional structure, which contrasts with the inherently
symbolic, localist representations of compositional structure characterising existing work.

TPR-based Work: Existing TPR-based approaches generate distributed representations of compo-
sitional structure by producing an element with the explicit mathematical form of a TPR. To learn
this highly specific form, these approaches rely on the algebraic characterisation of compositionality
present in formal domains, such as mathematics [38], or language [19 , 23 , 28 , 34 , 52] in addition to
strong supervision signals from highly structured downstream tasks, such as part-of-speech tagging
[23], and answering structured language [28 , 51] or mathematics questions [38]. In contrast, Soft TPR
eases these stringent constraints by offering a continuously relaxed specification of compositional
structure. This allows our approach to extend distributed representations of compositional structure
to the orthogonal and less algebraically structured domain of visual data, while also reducing reliance
on annotated data by instead using weak supervision to learn this relaxed representational form.

3 Preliminaries

3.1 A Formal Framework for Compositional Representations

We adopt a generalised, non-generative version of the definition of compositional representations
from [49]. Let data x ∈ X be compositionally-structured if there exists a decomposition function
β : X → A1 × . . . × An decomposing x into constituent parts (FoVs), i.e. β(x) = {a1, . . . , an},
where ai ∈ Ai. A mapping ψ : X → VF then produces a compositional representation if ψ(x) =
C(ψ1(a1), . . . , ψn(an)), where each ψi : Ai → Vi is a component function that independently
embeds a part ai (i.e., a particular FoV) into a vector space, and C : V1 × . . . × Vn → VF is a
composition function that combines these embedded parts to form the overall representation. This
construction enforces a faithful correspondence between the constituency structure of the data {ai}
and that of the representation, {ψi(ai)} (provided C is invertible).

We formalise a symbolic compositional representation, ψs(x), as one in which C is given by a
concatenation operation. Concretely, ψs(x) =

(
ψ1(a1)

T , . . . , ψn(an)
T
)T

. Indeed, the disentangle-
ment approaches of [8 , 10 , 13 , 14 , 17 , 22 , 24 , 26 , 31 , 32 , 33 , 35 , 36 , 37 , 47] all fit this framework,
concatenating scalar or vector-valued FoV tokens together to produce the representation. While
this design may be fundamentally at odds with the continuous, distributed nature of deep learning
(as detailed in Section 1), it provides one clear benefit: the embedded FoVs, {ψi(ai)} are trivially
recoverable by partitioning ψs(x).

In many scenarios, readily recovering the data constituents (i.e., FoVs), {ai}, from the compositional
representation ψ(x) is essential for practical utility. Here, we assume each ψi is invertible, so
direct recoverability of the data constituents, {ai}, from the representation ψ(x) is guaranteed if the
embedded FoVs, {ψi(ai)}, remain structurally separable in the representation, ψ(x). Motivated by
this requirement, we aim to construct compositional representations that: 1) achieve an inherently
distributed encoding of compositional structure by smoothly interweaving FoVs throughout all
dimensions of ψ(x), and 2) preserve the direct recoverability of the embedded FoVs.

3.2 The TPR Framework

Smolensky’s Tensor Product Representations (TPR) [3] provides one compelling realisation of an
inherently distributed encoding of compositional structure that, under certain conditions, preserves the
direct recoverability of the embedded FoVs. We briefly review key aspects here, with additional details
and formal proofs deferred to Appendix A . The TPR framework conceptualises a compositionally-
structured object, x, as comprising a number, NR, of roles, where each role r ∈ R is bound to a
corresponding filler f ∈ F , with this binding being denoted by f/r. Thus, compositionally-structured
objects are decomposeable into a set of role-filler bindings, β(x) = {fi/ri}NR

i=1. In natural language,
where the TPR is most commonly deployed [19 , 28 , 34 , 52], roles may correspond to grammatical cat-
egories (e.g., noun) and fillers specific words (e.g., cat). Translating this role-filler formalism to the
visual domain, we reinterpret roles as FoV types (e.g., floor colour), and fillers as FoV values (e.g.,
blue). Using this role-filler formalism to decompose the Shapes3D image in Figure 1 , we have
β(x) = {magenta/floor colour, orange/wall colour, aqua/object colour, large/object size,
oblong/object shape}.

4

To construct a TPR, the roles and fillers for each binding in x are independently embedded via role
and filler embedding functions, ξR : R→ VR, ξF : F → VF respectively. The binding f/r is then
encoded by taking a tensor product (denoted by ⊗) over the embedded role, ξR(r), and embedded
filler, ξF (f). Summing over the embeddings for all role-filler bindings in x yields the TPR, ψtpr(x):

ψtpr(x) :=
∑
i

ξF (fm(i))⊗ ξR(ri), (1)

where m : {1, . . . , NR} → {1, . . . , NF } is a matching function

2
 associating each of the NR roles to

the filler it binds to in the decomposition of x (i.e., β(x) = {fm(i)/ri}).

We now situate the TPR within the formal framework of Section 3.1, by observing that it defines
each representational component, ψi(ai) as an embedded role-filler binding, ξF (fm(i))⊗ ξR(ri), and
adopts ordinary vector space addition as its composition function, C. Unlike the concatenation in
symbolic, localist schemes, the TPR additively superposes all embedded FoVs in the same underlying
vector space, producing an inherently distributed representation of compositional structure in which
information from multiple role-filler bindings can be smoothly interwoven into the same dimensions.

3

A natural question arises from defining C as ordinary vector space addition: can we recover each
representational component – the embedded role-filler binding, ξi(fm(i))⊗ ξR(ri) – from the TPR,
which is their sum? Remarkably, despite the non-injectivity of the summation operation, the TPR’s
specific algebraic structure enables faithful recoverability of all representational components from the
TPR, through a process referred to as unbinding (see A.2 for more details). More concretely, provided
that the role embedding vectors {ξR(ri)} are linearly independent and known, the embedded filler
bound to the i-th role can be unbound from the representation, ψtpr(x), by taking a (tensor) inner
product between ψtpr(x) and the i-th unbinding vector, ui:

ψtpr(x)ui =

(∑
i

ξF (fm(i))⊗ ξR(ri)

)
ui = ξF (fm(i)), (2)

where ui is a vector corresponding to the i-th column of the (left) inverse of the matrix obtained by
taking all (linearly independent) role embeddings as columns. Repeating this unbinding procedure
using each of the NR unbinding vectors recovers each of the embedded fillers bound to the NR roles,
and thus, the entire set of embedded role filler bindings, {ξF (fm(i))⊗ ξR(ri)}. Hence, provided that
the linear independence of the roles holds, the TPR offers an inherently distributed representation
of compositional structure that nonetheless retains the chief benefit of symbolic approaches – direct
recoverability of each representational component.

4 Methods

4.1 Soft TPR: An Extension to the TPR Framework

While Tensor Product Representations offer a robust framework for encoding compositional structure
in a distributed manner, their rigid representational form imposes practical limitations. The core
limitation lies in TPR’s strict algebraic specification of compositional structure as a set of discrete
bindings, each of which comprise a single role and a single filler. This specification precludes the
representation of more ambiguous, quasi-compositional structures that cannot be neatly decomposed
in this way. For instance, even in the highly compositional domain of natural language, there exist
phenomena such as idiomatic expressions that resist straightforward decomposition into role-filler
pairs because their meanings cannot be directly inferred from their composite parts. Such examples
illustrate that real-world compositional structures may require more flexible representation than
what is offered by traditional TPRs. Consequently, TPRs may struggle to model more nuanced
forms of compositional structure that characterise less structured, non-formal data domains, such
as vision. Additionally, TPRs present a challenging learning task. Their representational form
ψtpr(x) :=

∑
i ξF (fm(i))⊗ ξR(ri) is only satisfied by a discrete subset of points within the underly-

ing representational space, VF ⊗ VR, as illustrated in Figure 1 c. This constraint forces representation
learners to map data to a highly restricted, discrete set of points, making learning inherently arduous.

2We omit the dependence of m on x for notational clarity.
3See Appendix A.4 for further discussion on the distributed nature of the TPR.

5

To overcome these shortcomings, we introduce Soft TPR, a continuous relaxation of the traditional
TPR specification. Soft TPRs allow any point in the underlying representational space VF ⊗ VR
that approximately conforms to the TPR specification. This removes the need for representations to
perfectly adhere to the rigid structural specification of the TPR, instead permitting them to flexibly
approximate this rigid form. This flexibility provides two main advantages: 1. Enhanced Repre-
sentational Flexibility: Soft TPR facilitates the representation of quasi-compositional structures
that do not perfectly adhere to the traditional TPR’s structural specification. This includes scenarios
where bindings are approximate rather than exact, or where multiple fillers influence a single role.
2. Improved Ease of Learning: The relaxed representational specification allows representation
learners to map data to broader regions of the representational space (as illustrated by the translucent
circular regions in Figure 1 c). This may facilitate more efficient learning, as there are more possible
mappings from the data to the required representational form.

Formally, to define the Soft TPR, we consider the vector space underlying TPRs, VF ⊗ VF , produced
by an arbitrary role embedding function ξR : R → VR and an arbitrary filler embedding function
ξF : F → VF . A Soft TPR is defined as any element z ∈ VF ⊗VR in this underlying representational
space that is sufficiently close to a traditional TPR, ψtpr

4
 , as measured by a chosen distance metric (we

take the Frobenius norm). Denoting the Frobenius norm by ||·||F , Soft TPR satisfies ||z−ψtpr||F < ϵ,
where ϵ is some small, scalar-valued positive quantity. This condition ensures that the Soft TPR
approximately encodes the TPR-based compositional structure of ψtpr, while allowing for slight
deviations which capture a more flexible, relaxed notion of compositionality that cannot be reduced
to a set of role-filler bindings (see B.2).

Despite this relaxation, Soft TPRs retain the critical advantage of traditional TPRs: the ability
to recover constituent role-filler bindings through the unbinding operation, albeit approximately.
Specifically, when unbinding a Soft TPR z, the operation yields soft filler embeddings f̃i that closely
approximate the true filler embeddings ξF (fm(i)). Formally, for a Soft TPR z, performing the
unbinding operation for the i-th role yields:

zui ≈ ψtprui =

(∑
i

ξF (fm(i))⊗ ξR(ri)

)
ui = ξF (fm(i)), (3)

= ξF (fm(i)) + ϵi =: f̃i, (4)

where ϵi = zui − ξF (fm(i)) represents the approximation error. This approximate recoverability
ensures that Soft TPRs implicitly encode a precise, algebraically-expressible form of compositional
structure, even when their representational form deviates from the exact TPR specification.

4.2 Soft TPR Autoencoder: Learning Distributed and Flexible Compositional
Representations

We define our vector spaces of interest over the reals as VF := RDF and VR := RDR where DF , DR

denote the dimensionality of the filler and role embedding spaces. The pivotal insight underlying
our method is that a Soft TPR can be effectively realised by ensuring that the encoder produces
representations that are amenable to quantisation into explicit TPRs. Specifically, since a Soft TPR
is any arbitrary element from the vector space RDF ·DR

5
 sufficiently close to an explicit TPR, any

(DF ·DR)-dimensional vector produced by an encoder in a standard autoencoding framework can
be treated as a Soft TPR candidate. This realisation suggests that a conventional autoencoding
framework only requires modest modifications to generate Soft TPRs.

Our Soft TPR Autoencoder comprises three main components: a standard encoder, E, the TPR
decoder, and a standard decoder, D. The encoder output, z, serves as the Soft TPR. The overarching
intuition guiding our architecture is to ensure that z can be effectively quantised or decoded into an
explicit TPR, thereby enforcing the Soft TPR property, ||z − ψtpr||2 < ϵ.

Representational Form: To ensure that the encoder produces elements with the form of a Soft TPRs,
we introduce a mechanism that penalises the Euclidean distance ||z − ψ∗

tpr||2 between the encoder

4We occasionally omit the dependence on x for notational clarity.
5Due to isomorphism of vector spaces RDF ⊗ RDR ∼= RDF ·DR , we henceforth use vectors from RDF ·DR

in place of rank-2 tensors from RDF ⊗RDR , and the Euclidean norm instead of the Frobenius norm to align the
Soft TPR framework more seamlessly with the autoencoding framework.

6

Encoder
(E)

Quantisation
Module

Unbound ‘soft’ fillersUnbinding
Module

TPR Decoder

TPR
Constructor

Vector
Quantisation TPR

operator

Decoder
(D)

Quantised fillers

Unbinding
operator

Filler embedding matrixRole embedding matrix

Figure 2: Diagram illustrating the Soft TPR Autoencoder. We encourage the encoder E’s output, z, to have the
form of a Soft TPR by penalising its distance with the greedily defined, explicit TPR, ψ∗

tpr of Equation 5 that z
best approximates. ψ∗

tpr is recovered using a 3 step process performed by our TPR decoder (center rectangle): 1)
unbinding, 2) quantisation, and 3) TPR construction. The decoder, D, reconstructs the input image using ψ∗

tpr .

output, z, and some explicit TPR, ψ∗
tpr, that z best approximates. To obtain ψ∗

tpr needed to compute
the loss, we derive an explicit analytical form for ψ∗

tpr and construct elements satisfying this analytical
form using a role embedding matrix, MξR containing NR DR-dimensional role embedding vectors,
{ξR(ri)}, and a filler embedding matrix, MξF containing NF DF -dimensional filler embedding
vectors, {ξF (fi)}. To define an explicit analytical form for ψ∗

tpr, we use a greedily optimal selection
of filler embeddings based on their proximity to the soft filler embeddings extracted from z:

ψ∗
tpr :=

∑
i

ξF (fm(i))⊗ ξR(ri),where m(i) := argmin
j

||f̃k − ξF (fj)||2, and f̃k := zui. (5)

That is, we define ψ∗
tpr as the TPR constructed from explicit filler embeddings ξF (fj) with the

smallest Euclidean distance to the soft filler embeddings f̃k of z. To construct elements satisfying
(5), we use a three-step process carried out by the novel TPR decoder we introduce, visible in
Figure 2 : 1) Unbinding: Utilising a randomly-initialised dense role embedding matrix MξR , the
unbinding module extracts soft filler embeddings {f̃i} by performing the TPR unbinding operation
on z. We elaborate on our theoretically-informed reason for this design, how the unbinding vec-
tors are obtained, and for not backpropagating gradient to MξR in B.4.1 . 2) Quantisation: The
quantisation module, containing a learnable filler embedding matrix MξF , employs the VQ-VAE
vector quantisation algorithm [11] to both 1) learn the explicit filler embeddings, and 2) quantise
the soft filler embeddings {f̃1, . . . , f̃NR

} produced by the unbinding module into the explicit filler
embeddings {ξF (f1), . . . , ξF (fNR

)} with the smallest Euclidean distances. 3) TPR Construction:
The quantised filler embeddings {ξF (fm(i))} are then bound to their respective roles using the tensor
product, and all embedded bindings are summed together to produce the explicit TPR ψ∗

tpr with the
form of Eq 5 . ψ∗

tpr is subsequently used by the decoder,D, to reconstruct the input image. The overall
unsupervised loss, Lu, comprises three components, where s denotes the stop-gradient operator, β is
a hyperparameter controlling the commitment loss in VQ-VAE, and Lr is a suitable image-based
reconstruction loss (we use L2):

Lu := ||z − ψ∗
tpr||22︸ ︷︷ ︸

Soft TPR form penalty

+Lr(x,D(ψ∗
tpr))︸ ︷︷ ︸

reconstruction loss

+
∑
i

1

NR

(
||s[ξF (fm(i))]− f̃i||22 + β||ξF (fm(i))− s[f̃i]||22

)
︸ ︷︷ ︸

VQ-VAE quantisation loss

.

(6)

Representational Content: While the unsupervised loss Lu ensures that z maintains the Soft TPR
form by being close to an explicit TPR, it does not guarantee that the content of z accurately reflects
the true role-filler semantics of the data. To address this, we introduce a weakly supervised loss that
aligns z with the ground-truth semantics of the image. We employ a match-pairing context similar to
[13 , 22 , 33 , 35], where image pairs (x, x′) share the same role-filler bindings for all but one role, ri.
The identity of ri is known, but not any of the specific fillers or bindings. Our intuition is that, for z to
accurately reflect the semantics of the image, the Euclidean distance between the quantised fillers of
x and x′ bound to role ri should be maximal, relative to the distances between the filler embeddings
pairs for all other roles rj , j ̸= i. To encourage this, we apply the cross entropy loss corresponding
to the 3rd term in Eq 7 , where ∆q denotes the NR-dimensional vector with each dimension (∆q)k

7

populated by the Euclidean distance between the quantised fillers of x and x′ for role rk, and l
denotes the one-hot vector of dimension NR with the index for ri set to 1. Additionally, like [47],
we incorporate a reconstruction loss (the 2nd term of Eq 7) to enforce consistency when swapping
the quantised filler embeddings for role ri. Specifically, we construct new TPRs by swapping the
quantised fillers for ri between x and x′ to generate ψstpr(x) and ψstpr(x

′), and ensure that the decoder
can accurately reconstruct the corresponding swapped images from these swapped TPRs.

Combining these components, our final loss, L, is a weighted sum over the unsupervised and weakly
supervised loss components, where λ1 and λ2 are hyperparameters:

L := Lu + λ1

(
1

2
Lr(x,D(ψstpr(x

′))) +
1

2
Lr(x′, D(ψstpr(x)))

)
+ λ2CE(∆q, l). (7)

5 Results

To evaluate our Soft TPR framework, we perform evaluation along three dimensions that are standard
in the compositional representation learning literature [25 , 30 , 33 , 42]: 1) Compositional Structure /
Disentanglement: To what extent do Soft TPR representations capture explicitly compositional struc-
ture? 2) Representation Learner Convergence: How efficiently can representation learners acquire
Soft TPR’s distributed, flexible compositional structure? 3) Downstream Model Performance: Does
Soft TPR’s distributed, flexible compositional form offer tangible benefits for downstream models
utilising compositional representations?

We benchmark against a suite of weakly supervised disentanglement baselines: Ada-GVAE [33],
GVAE [22], ML-VAE [13], SlowVAE [39], and the GAN-based model of [35], which we henceforth
refer to as ‘Shu’. These models produce symbolic compositional representations corresponding
to a concatenation of scalar-valued FoV tokens. Similar to our approach, Ada-GVAE, GVAE,
ML-VAE, SlowVAE, and Shu are trained with paired samples (x, x′) sharing values for all but a
subset of FoVs types (roles), I , with ML-VAE, GVAE, SlowVAE, and Shu assuming access to I ,
matching our model’s level of supervision. To ensure a fair comparison, we modify Ada-GVAE
(method detailed in Appendix C.2.2) for more direct comparability, denoting our modification by
Ada-GVAE-k. Additionally, we benchmark against 2 baselines producing symbolic vector-tokened
compositional representations: COMET [36], and Visual Concept Tokeniser (VCT) [47], although
these are fully unsupervised and not directly comparable to our method. We train five instances of
each representation learning model using five random seeds for 200,000 iterations across all datasets,
and report averaged results (an unabridged suite of all results is contained in the Appendix).

5.1 Compositional Structure / Disentanglement

To demonstrate that Soft TPRs inherently capture the algebraic compositional structure required for
effective disentanglement, we first quantise each Soft TPR, z, into its corresponding explicit TPR,
ψ∗
tpr using the TPR decoder (note that once the model is trained, quantisation is fully deterministic).

This quantisation process transforms the implicit compositional information encoded within Soft
TPRs into an explicit algebraic form suitable for evaluation. We then apply standard disentanglement
metrics across benchmark datasets including Cars3D [4], MPI3D [21], and Shapes3D [24]. Table

 1 illustrates that Soft TPR consistently outperforms symbolic compositional baselines across all
datasets, achieving state-of-the-art results with notable DCI metric improvements of 29% on Cars3D
and 74% on the more challenging MPI3D dataset. To ensure these gains are attributable to Soft TPR
framework rather than merely a marginal increase in model capacity (Soft TPR Autoencoder adds
between 1,600-13,568 model parameters to a standard (variational) autoencoder), we conduct control
experiments by equalising parameter counts in applicable baselines. Consistent with findings from
prior work [40], we observe no performance improvements in relevant symbolic baselines when
parameter counts are increased (see C.2.4).

5.2 Representation Learner Convergence Rate

To explore how the Soft TPR framework influences the convergence rate of representation learn-
ers, we analyse representations produced at varying stages of representation learner training (100,
1,000, 10,000, 100,000 and 200,000 iterations), and evaluate both their 1) Disentanglement, and 2)
Downstream Utility. We quantify downstream utility of learned representations by examining the

8

performance of downstream models on two tasks common in the disentanglement literature [25 , 30 ,
 33 , 42]: a classification-based task assessing the model’s ability to perform abstract visual reasoning
[30] and a regression task involving the prediction of continuous FoV values for the disentanglement
datasets [42]. Our findings indicate that the Soft TPR framework generally achieves faster disentan-
glement convergence, particularly on Cars3D and MPI3D datasets (see Appendix C.4.1). Moreover,
Soft TPR consistently accelerates the learning of useful representations for both downstream tasks.
The downstream performance improvements are particularly pronounced in the low iteration regime –
for instance, at only 100 iterations of representation learner training, as shown in Tables 2 and 3 . For
fair comparison, we embed baseline representations of both higher and lower dimensionality into
the same vector space as Soft TPR, which we denote by †, and select the best-performing variant
(original or dimensionality-matched) for each baseline (details in Appendix C).

Table 1: FactorVAE and DCI scores. Additional results in Section C.3.3

Models
Cars3D Shapes3D MPI3D

FactorVAE score DCI score FactorVAE score DCI score FactorVAE score DCI score

Symbolic scalar-tokened compositional representations

Slow-VAE 0.902 ± 0.035 0.509 ± 0.027 0.950 ± 0.032 0.850 ± 0.047 0.455 ± 0.083 0.355 ± 0.027
Ada-GVAE-k 0.947 ± 0.064 0.664 ± 0.167 0.973 ± 0.006 0.963 ± 0.077 0.496 ± 0.095 0.343 ± 0.040

GVAE 0.877 ± 0.081 0.262 ± 0.095 0.921 ± 0.075 0.842 ± 0.040 0.378 ± 0.024 0.245 ± 0.074
ML-VAE 0.870 ± 0.052 0.216 ± 0.063 0.835 ± 0.111 0.739 ± 0.115 0.390 ± 0.026 0.251 ± 0.029

Shu 0.573 ± 0.062 0.032 ± 0.014 0.265 ± 0.043 0.017 ± 0.006 0.287 ± 0.034 0.033 ± 0.008

Symbolic vector-tokened compositional representations

VCT 0.966 ± 0.029 0.382 ± 0.080 0.957 ± 0.043 0.884 ± 0.013 0.689 ± 0.035 0.475 ± 0.005
COMET 0.339 ± 0.008 0.024 ± 0.026 0.168 ± 0.005 0.002 ± 0.000 0.145 ± 0.024 0.005 ± 0.001

Fully continuous compositional representations

Ours 0.999 ± 0.001 0.863 ± 0.027 0.984 ± 0.012 0.926 ± 0.028 0.949 ± 0.032 0.828 ± 0.015

Table 2: FoV regression R2 scores (100 iterations of repre-
sentation learner training).

Models
Cars3D Shapes3D MPI3D

Symbolic scalar-tokened

Slow-VAE 0.233 ± 0.048 0.600 ± 0.048 0.557 ± 0.012
Ada-GVAE-k 0.307 ± 0.084 0.684 ± 0.059 0.519 ± 0.023

GVAE 0.319 ± 0.073 0.565 ± 0.034 0.511 ± 0.037
ML-VAE 0.317 ± 0.058 0.551 ± 0.059 0.504 ± 0.016

Shu† 0.012 ± 0.007 0.461 ± 0.075 0.299 ± 0.040

Symbolic vector-tokened

VCT 0.080 ± 0.001 0.886 ± 0.033 0.316 ± 0.016
COMET† 0.484 ± 0.477 0.474 ± 0.062 0.240 ± 0.010

Fully continuous

Ours 0.531 ± 0.054 0.981 ± 0.003 0.732 ± 0.012

Table 3: Abstract visual reasoning accuracy (100
iterations of representation learner training).

Models
Abstract visual reasoning dataset

Symbolic scalar-tokened

Slow-VAE† 0.552 ± 0.035
Ada-GVAE-k† 0.631 ± 0.037

GVAE† 0.554 ± 0.031
ML-VAE† 0.550 ± 0.025

Shu 0.208 ± 0.052

Symbolic vector-tokened

VCT 0.440 ± 0.033
COMET† 0.348 ± 0.069

Fully continuous

Ours 0.804 ± 0.016

5.3 Downstream Models

To evaluate whether the distributed and flexible encoding of compositional structure offered by
the Soft TPR benefits downstream models, we examine both: 1) Sample Efficiency and 2) Raw
Performance in Low Sample Regimes, using the previously mentioned abstract visual reasoning
and FoV regression tasks. In line with [25], we quantify sample efficiency with a ratio-based metric
comparing downstream model performance using restricted sample sizes (100, 250, 500, 1,000, and
10,000) against performance when trained using all samples. As illustrated in Table 4 , Soft TPR
substantially outperforms baseline models in sample efficiency, especially in the most restrictive
case involving only 100 samples, achieving a 93% improvement. Additionally, Soft TPR produces
substantial raw performance increases in the low sample regime, as evidenced by the 138% and 168%
improvements in Table 4 for the low-sample regimes of 100 and 200 samples respectively, and the
30% improvement in Table 5 .

5.4 Ablation Studies

To disentangle the contributions of Soft TPR’s foundational components, we conduct ablation
studies focusing on two critical properties that are hypothesised to influence the Soft TPR’s learning
of compositional representations: 1) Relaxed Representational Constraints and 2) Distributed
Encoding, denoted RRC and DE respectively in Table 7 . For Relaxed Representational Constraints,
we significantly increase the weighting of the form penalty ||z − ψ∗

tpr||2 in the Soft TPR loss to
enforce rigid representational constraints on the Soft TPR Autoencoder, effectively forcing it to

9

Table 4: Downstream FoV R2 scores (odd columns) and sample
efficiencies (even columns) on the MPI3D dataset.

Models

100 samples 100 samples/all 250 samples 250 samples/all

Symbolic scalar-tokened compositional representations

Slow-VAE 0.127 ± 0.050 0.130 ± 0.051 0.152 ± 0.011 0.155 ± 0.011
Ada-GVAE-k 0.206 ± 0.031 0.270 ± 0.037 0.213 ± 0.023 0.279 ± 0.026

GVAE 0.181 ± 0.030 0.234 ± 0.035 0.217 ± 0.023 0.282 ± 0.027
ML-VAE 0.182 ± 0.013 0.236 ± 0.019 0.222 ± 0.024 0.288 ± 0.030

Shu 0.151 ± 0.016 0.343 ± 0.024 0.211 ± 0.026 0.482 ± 0.075

Symbolic vector-tokened compositional representations

VCT 0.086 ± 0.051 0.189 ± 0.107 0.119 ± 0.070 0.246 ± 0.137
COMET -0.051 ± 0.015 0.000 ± 0.000 -0.042 ± 0.018 0.000 ± 0.000

Fully continuous compositional representations

Ours 0.490 ± 0.068 0.556 ± 0.078 0.594 ± 0.056 0.665 ± 0.067

Table 5: Abstract visual reasoning accuracy
in the low-sample regime of 500 samples.

Models Symbolic scalar-tokened

Slow-VAE 0.196 ± 0.028
Ada-GVAE-k 0.203 ± 0.007

GVAE 0.182 ± 0.013
ML-VAE 0.193 ± 0.012

Shu 0.200 ± 0.010

Symbolic vector-tokened

VCT 0.277 ± 0.039
COMET 0.259 ± 0.016

Fully continuous

Ours 0.360 ± 0.033

Table 6: Downstream FoV R2 scores for TPR and Soft TPR (num-
ber of samples in brackets)

Representational form Cars3D Shapes3D MPI3D

TPR (100 samples) 0.361 ± 0.031 0.447 ± 0.108 0.415 ± 0.050
Soft TPR (100 samples) 0.638 ± 0.010 0.481 ± 0.081 0.531 ± 0.069

TPR (250 samples) 0.537 ± 0.053 0.669 ± 0.108 0.598 ± 0.081
Soft TPR (250 samples) 0.832 ± 0.027 0.728 ± 0.021 0.621 ± 0.072

Table 7: Effect of model properties on disen-
tanglement (MPI3D dataset).

Property DCI Score

- RRC & DE 0.225 ± 0.034
- RRC 0.598 ± 0.093
- DE 0.704 ± 0.135

+ RRC & DE (Full) 0.828 ± 0.015

produce representations that precisely match the TPR-specified compositional form. For Distributed
Encoding, we modify the model to encode compositional structure in an inherently less distributed
manner, by modifying the sparsity of ψ∗

tpr (see C.2.4). Results in Table 7 demonstrate that both the
Soft TPR’s distributed encoding and relaxed constraints are essential for learning representations
with high compositional structure, as quantified by the disentanglement metrics. Additionally, we
examine the impact of Soft TPR’s flexible, quasi-compositional form on downstream performance
by replacing each Soft TPR, z, with its quantised explicit TPR, ψ∗

tpr in downstream tasks. Table 6

and Appendix C.6.3 indicates that Soft TPRs provide downstream models with unique performance
improvements that explicit TPRs (which are produced under the same conditions) cannot account for.
Please see Appendix C.6 for further details and full ablation results, including additional ablations.

5.5 Key Insights

The empirical results of the Soft TPR framework reveal two primary insights. Firstly, deep learning
models may more effectively learn precise compositional structures when these structures are 1)
implicitly acquired through relaxed representational constraints, allowing the model to acquire
precise compositional forms (i.e., ψ∗

tpr) through quantisation of flexible Soft TPRs, z, and 2) when
the compositional structure is assumed to be encoded in a distributed format. Secondly, the flexible
representational form of Soft TPR offers downstream models unique advantages by enabling more
efficient utilisation of implicitly encoded compositional information compared to their rigid coun-
terparts, ψ∗

tpr. Together, these comprehensive model benefits empiricially demonstrate the value of
the framework’s 1) relaxed representational constraints, 2) distributed encoding of compositional
structure, and 3) flexible representational form.

6 Conclusion

In this work, we tackle a challenge tracing its roots to the conception of the connectionist vs.
classicalist debate: the fundamental mismatch between compositional structure and the inherently
distributed nature of deep learning. To bridge this gap, we introduce the Soft TPR, a new, inherently
distributed, flexible compositional representational form extending Smolensky’s Tensor Product
Representation, together with the Soft TPR Autocoder, a theoretically-principled architecture designed
for learning Soft TPRs. Our flexible, distributed framework demonstrates substantial improvements in
the visual representation learning domain – enhancing the representation of compositional structure,
accelerating convergence in representation learners, and boosting efficiency in downstream models.
Future work will extend this framework to hierarchical compositional structures, enabling bound
fillers to recursively decompose into role-filler bindings for enhanced representational expressivity.

10

Acknowledgements

This research has been supported by an UNSW University Postgraduate Award. We thank the
reviewers for their valuable comments, J. Hershey for a healthy dose of skepticism which greatly
improved this work, and B. Spehar for insightful discussions.

References
[1] Noam Chomsky. Syntactic Structures. The Hague: Mouton, 1957.
[2] Jerry A. Fodor. The Language of Thought: A Theory of Mental Representation. Cambridge, MA: Harvard

University Press, 1975.
[3] Paul Smolensky. “Tensor product variable binding and the representation of symbolic structures in

connectionist systems”. In: Artificial Intelligence 46.1 (1990), pp. 159–216.
[4] Sanja Fidler, Sven Dickinson, and Raquel Urtasun. “3D Object Detection and Viewpoint Estimation with

a Deformable 3D Cuboid Model”. In: Advances in Neural Information Processing Systems. 2012.
[5] Yoshua Bengio. Deep Learning of Representations: Looking Forward. 2013. arXiv: 1305 . 0445

[cs.LG] .
[6] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. “Neural Module Networks”. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 39–48. URL:
 https://api.semanticscholar.org/CorpusID:5276660 .

[7] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks. 2015.
arXiv: 1502.05698 [cs.AI] . URL: https://arxiv.org/abs/1502.05698 .

[8] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. “InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”. In:
Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett. Vol. 29. Curran Associates, Inc., 2016.

[9] Paul Smolensky and Matthew A. Goldrick. “Gradient Symbolic Representations in Grammar: The case
of French Liaison”. In: 2016. URL: https://api.semanticscholar.org/CorpusID:36953611 .

[10] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: International Conference on Learning Representations. 2017.

[11] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu koray. “Neural Discrete Representation
Learning”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,
2017.

[12] Tameem Adel, Zoubin Ghahramani, and Adrian Weller. “Discovering Interpretable Representations for
Both Deep Generative and Discriminative Models”. In: Proceedings of the 35th International Conference
on Machine Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 50–59.

[13] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. “Multi-Level Variational Autoencoder:
Learning Disentangled Representations From Grouped Observations”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 32.1 (2018).

[14] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-VAE. 2018. arXiv: 1804.03599 [stat.ML] .

[15] Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Duvenaud. “Isolating Sources of Disentangle-
ment in Variational Autoencoders”. In: Advances in Neural Information Processing Systems. 2018.

[16] Cian Eastwood and Christopher K. I. Williams. “A Framework for the Quantitative Evaluation of
Disentangled Representations”. In: International Conference on Learning Representations. 2018.

[17] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. “Variational Inference of Disentangled
Latent Concepts from Unlabeled Observations”. In: 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
2018.

[18] Adam Santoro, Felix Hill, David Barrett, Ari Morcos, and Timothy Lillicrap. “Measuring abstract
reasoning in neural networks”. In: International conference on machine learning. 2018, pp. 4477–4486.

[19] Kezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul Smolensky, Kenneth D. Forbus, and Jianfeng Gao.
“Natural- to formal-language generation using Tensor Product Representations”. In: CoRR abs/1910.02339
(2019). arXiv: 1910.02339 . URL: http://arxiv.org/abs/1910.02339 .

[20] Elliot Creager, David Madras, Joern-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi,
and Richard Zemel. “Flexibly Fair Representation Learning by Disentanglement”. In: Proceedings of the
36th International Conference on Machine Learning. 2019.

11

https://arxiv.org/abs/1305.0445
https://arxiv.org/abs/1305.0445
https://api.semanticscholar.org/CorpusID:5276660
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://api.semanticscholar.org/CorpusID:36953611
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1910.02339
http://arxiv.org/abs/1910.02339

[21] Muhammad Waleed Gondal, Manuel Wüthrich, undefinedord̄e Miladinović, Francesco Locatello, Martin
Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer. “On
the transfer of inductive bias from simulation to the real world: a new disentanglement dataset”. In:
Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019.

[22] Haruo Hosoya. “Group-based learning of disentangled representations with generalizability for novel
contents”. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019,
pp. 2506–2513.

[23] Qiuyuan Huang, Li Deng, Dapeng Wu, Chang Liu, and Xiaodong He. “Attentive Tensor Product
Learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (2019), pp. 1344–
1351.

[24] Hyunjik Kim and Andriy Mnih. Disentangling by Factorising. 2019. arXiv: 1802.05983 [stat.ML] .
[25] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,

and Olivier Bachem. “Challenging Common Assumptions in the Unsupervised Learning of Disentangled
Representations”. In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 4114–4124.

[26] Emile Mathieu, Tom Rainforth, N Siddharth, and Yee Whye Teh. “Disentangling Disentanglement in
Variational Autoencoders”. In: Proceedings of the 36th International Conference on Machine Learning.
2019.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf .

[28] Imanol Schlag and Jürgen Schmidhuber. “Learning to Reason with Third-Order Tensor Products”. In:
Advances in Neural Processing Information Systems. 2019.

[29] Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmidhuber, and Jianfeng
Gao. “Enhancing the Transformer with Explicit Relational Encoding for Math Problem Solving”. In:
ArXiv abs/1910.06611 (2019). URL: https://api.semanticscholar.org/CorpusID:204575948 .

[30] Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier Bachem. “Are disentan-
gled representations helpful for abstract visual reasoning?” In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems. 2019.

[31] Junxiang Chen and Kayhan Batmanghelich. “Weakly Supervised Disentanglement by Pairwise Sim-
ilarities”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (2020), pp. 3495–
3502.

[32] Zheng Ding, Yifan Xu, Weijian Xu, Gaurav Parmar, Yang Yang, Max Welling, and Zhuowen Tu. “Guided
Variational Autoencoder for Disentanglement Learning”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2020.

[33] F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, and M. Tschannen. “Weakly-Supervised
Disentanglement Without Compromises”. In: Proceedings of the 37th International Conference on
Machine Learning (ICML). Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 6348–
6359.

[34] R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul Smolensky. “Tensor Product Decomposition
Networks: Uncovering Representations of Structure Learned by Neural Networks”. In: Proceedings
of the Society for Computation in Linguistics 2020. Association for Computational Linguistics, 2020,
pp. 277–278. URL: https://aclanthology.org/2020.scil-1.34 .

[35] Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. “Weakly Supervised Disentan-
glement with Guarantees”. In: International Conference on Learning Representations. 2020.

[36] Yilun Du, Shuang Li, Yash Sharma, B. Joshua Tenenbaum, and Igor Mordatch. “Unsupervised Learning
of Compositional Energy Concepts”. In: Advances in Neural Information Processing Systems. 2021.

[37] Insu Jeon, Wonkwang Lee, Myeongjang Pyeon, and Gunhee Kim. “IB-GAN: Disentangled Representa-
tion Learning with Information Bottleneck Generative Adversarial Networks”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 35.9 (May 2021), pp. 7926–7934. DOI: 10.1609/aaai.
v35i9.16967 . URL: https://ojs.aaai.org/index.php/AAAI/article/view/16967 .

[38] Yichen Jiang, Asli Celikyilmaz, Paul Smolensky, Paul Soulos, Sudha Rao, Hamid Palangi, Roland
Fernandez, Caitlin Smith, Mohit Bansal, and Jianfeng Gao. “Enriching Transformers with Structured
Tensor-Product Representations for Abstractive Summarization”. In: Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Online: Association for Computational Linguistics, 2021, pp. 4780–4793. DOI: 10.18653/
v1/2021.naacl-main.381 . URL: https://aclanthology.org/2021.naacl-main.381 .

12

https://arxiv.org/abs/1802.05983
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://api.semanticscholar.org/CorpusID:204575948
https://aclanthology.org/2020.scil-1.34
https://doi.org/10.1609/aaai.v35i9.16967
https://doi.org/10.1609/aaai.v35i9.16967
https://ojs.aaai.org/index.php/AAAI/article/view/16967
https://doi.org/10.18653/v1/2021.naacl-main.381
https://doi.org/10.18653/v1/2021.naacl-main.381
https://aclanthology.org/2021.naacl-main.381

[39] David A. Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge,
and Dylan Paiton. “Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding”.
In: International Conference on Learning Representations. 2021. URL: https://openreview.net/
forum?id=EbIDjBynYJ8 .

[40] Milton Llera Montero, Casimir JH Ludwig, Rui Ponte Costa, Gaurav Malhotra, and Jeffrey Bowers. “The
role of Disentanglement in Generalisation”. In: International Conference on Learning Representations.
2021. URL: https://openreview.net/forum?id=qbH974jKUVy .

[41] Sungho Park, Sunhee Hwang, Dohyung Kim, and Hyeran Byun. “Learning Disentangled Representation
for Fair Facial Attribute Classification via Fairness-aware Information Alignment”. In: Proceedings of
the AAAI Conference on Artificial Intelligence 35 (2021), pp. 2403–2411. DOI: 10.1609/aaai.v35i3.
16341 . URL: https://ojs.aaai.org/index.php/AAAI/article/view/16341 .

[42] L. Schott, J. von Kügelgen, F. Träuble, P. Gehler, C. Russell, M. Bethge, B. Schölkopf, F. Locatello, and
W. Brendel. “Visual Representation Learning Does Not Generalize Strongly Within the Same Domain”.
In: ICLR 2021 - Workshop on Generalization beyond the training distribution in brains and machines.
2021.

[43] Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh Goyal,
Bernhard Schölkopf, and Stefan Bauer. “On Disentangled Representations Learned from Correlated
Data”. In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Proceedings
of Machine Learning Research. 2021, pp. 10401–10412.

[44] Milton Montero, Jeffrey Bowers, Rui Ponte Costa, Casimir Ludwig, and Gaurav Malhotra. “Lost in
Latent Space: Examining failures of disentangled models at combinatorial generalisation”. In: Advances
in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh. Vol. 35. Curran Associates, Inc., 2022, pp. 10136–10149.

[45] Zoltán Gendler Szabó. “Compositionality”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward
N. Zalta and Uri Nodelman. Fall 2022. Metaphysics Research Lab, Stanford University, 2022.

[46] Tao Yang, Xuanchi Ren, Yuwang Wang, Wenjun Zeng, and Nanning Zheng. “Towards Building A
Group-based Unsupervised Representation Disentanglement Framework”. In: International Conference
on Learning Representations. 2022. URL: https://openreview.net/forum?id=YgPqNctmyd .

[47] Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. “Visual Concepts Tokenization”. In: Advances in
Neural Information Processing Systems. 2022.

[48] H. Zhang, Y.-F. Zhang, W. Liu, A. Weller, B. Schölkopf, and E. Xing. “Towards Principled Disentangle-
ment for Domain Generalization”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2022, pp. 8024–8034. URL: https://openaccess.thecvf.com/
content/CVPR2022/papers/Zhang_Towards_Principled_Disentanglement_for_Domain_
Generalization_CVPR_2022_paper.pdf .

[49] Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. “Compositional
Generalization from First Principles”. In: Thirty-seventh Conference on Neural Information Processing
Systems. 2023. URL: https://openreview.net/forum?id=LqOQ1uJmSx .

[50] Haoyang Li, Xin Wang, Zeyang Zhang, Haibo Chen, Ziwei Zhang, and Wenwu Zhu. “Disentangled
Graph Self-supervised Learning for Out-of-Distribution Generalization”. In: Forty-first International
Conference on Machine Learning. 2024. URL: https://openreview.net/forum?id=OS0szhkPmF .

[51] Taewon Park, Inchul Choi, and Minho Lee. “Attention-based Iterative Decomposition for Tensor Product
Representation”. In: The Twelfth International Conference on Learning Representations. 2024. URL:
 https://openreview.net/forum?id=FDb2JQZsFH .

[52] Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, and Dapeng Wu. “Tensor Product Generation
Networks for Deep NLP Modeling”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). Association for Computational Linguistics.

13

https://openreview.net/forum?id=EbIDjBynYJ8
https://openreview.net/forum?id=EbIDjBynYJ8
https://openreview.net/forum?id=qbH974jKUVy
https://doi.org/10.1609/aaai.v35i3.16341
https://doi.org/10.1609/aaai.v35i3.16341
https://ojs.aaai.org/index.php/AAAI/article/view/16341
https://openreview.net/forum?id=YgPqNctmyd
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Towards_Principled_Disentanglement_for_Domain_Generalization_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Towards_Principled_Disentanglement_for_Domain_Generalization_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Towards_Principled_Disentanglement_for_Domain_Generalization_CVPR_2022_paper.pdf
https://openreview.net/forum?id=LqOQ1uJmSx
https://openreview.net/forum?id=OS0szhkPmF
https://openreview.net/forum?id=FDb2JQZsFH

Appendix

 A TPR Framework 14

 A.1 Additional Details . 14

 A.2 Formal Proofs . 15

 A.3 Shortcomings of Symbolic Compositional Representations and How TPR Helps . . 16

 A.4 TPR’s Distributed Nature and the Equivalence between Degenerate TPRs and Sym-
bolic Representations . 18

 B Soft TPR Framework 20

 B.1 Shortcomings of the TPR and How Soft TPR Helps 20

 B.2 Proof that Soft TPRs Do Not Necessarily Have the Explicit Form of a TPR 22

 B.3 Alternative Formulations . 23

 B.4 Soft TPR Autoencoder . 23

 B.5 Model Hyperparameters and Hyperparameter Tuning 26

 C Results 27

 C.1 Datasets . 27

 C.2 Baseline Implementations and Experimental Settings 27

 C.3 Disentanglement . 29

 C.4 Representation Learning Convergence . 31

 C.5 Downstream Performance . 50

 C.6 Ablation Experiments . 69

 D Limitations and Future Work 81

 D.1 Extension to Linguistic Domains . 81

 D.2 Need for Weak Supervision . 82

 D.3 Downstream Utility . 82

 D.4 Dimensionality . 83

 D.5 Computational Cost . 83

A TPR Framework

In this section, we provide additional details regarding Smolensky’s TPR framework [3], as well as
formal proofs of presented results. We refer interested readers to [3] for a more comprehensive dive
into the TPR framework.

A.1 Additional Details

By defining the constituent components of any compositional object as a set of role-filler bindings,
the TPR defines the decomposition function, β, of Section 3.1 that maps from a set of compositional
objects, X , to a set of parts, more explicitly as follows [3]:

β : X → 2F×R;x→ {(f, r)|f/r}, (8)

14

where F denotes a set of fillers, R denotes a set of roles, and f/r denotes the binding of filler f ∈ F
to role r ∈ R. Note that in contrast to the formal definition of β we use in Section 3.1 , which assumes
each x ∈ X is decomposable into a set of n parts, the above decomposition allows objects to be
decomposed into a variably-sized set of role-filler bindings, with this set corresponding to an element
in the powerset of F × R. For the considered visual representation learning domain, all datasets
clearly have the property of being decomposable into a fixed size set of role-filler bindings, as all
images in these datasets contain the same number of FoV types and each FoV type is bound to a
FoV token. Due to this property, we can take β as a special subcase of the generalised definition in
Equation 8 :

β : X → A : x→ {(fm(i), ri)|fm(i)/ri}. (9)

where m : {1, . . . , NR} → {1, . . . , NF } denotes a matching function that associates each role ri
with the filler it binds to in β(x) (we again drop the dependence of m on x for ease of notation), and
A denotes the set of all possible bindings produced by binding a filler to each of the NR roles, with
size NNR

F (we assume the same filler can bind to multiple roles).

A.2 Formal Proofs

We now formally prove that the TPR with β defined in 9 has form ψtpr(x) = C(ψ1(a1), . . . , ψn(an))
and thus corresponds to the definition of a compositional representation in Section 3.1 .

Proof. We denote the role embedding and filler embedding functions as ξR : R→ VR, ξF : F → VF
respectively.

By definition of the TPR in Eq 1 , we have that:

ψtpr(x) :=
∑
i

ξF (fm(i))⊗ ξR(ri).

and hence,

ψtpr(x) =
∑
i

ψi(fm(i), ri),

where ai := (fm(i), ri) ∈ β(x), ψi : F ×R→ VF ⊗ VR; (fm(i), ri) → ξF (fm(i))⊗ ξR(ri), and C
is ordinary vector space addition. Hence, almost trivially, ψtpr(x) clearly has the required form to be
a compositional representation.

Now, we prove the recoverability of the embedded components {ψi(fm(i), ri)} from the TPR,
ψtpr(x), provided that the set of all role embedding vectors, {ξR(ri)}, are linearly independent.
Similar variants of this proof can be found in [3], [19].

Proof. Assume the set of all role embedding vectors {ξR(ri)} are linearly independent. Then, the
role embedding matrix, MξR := (ξR(r1) . . . ξR(rNR

)) formed by taking the role embedding vectors
as columns, has a left inverse, U , such that:

UMξR = INR×NR
.

Hence, we have that (UMξR)ij = Ui:MξR:j = Iij .

For ease of notation, let ui denote the i-th column of UT , and note that ξR(rj) clearly corresponds to
MξR:j . So, Ui:MξR:j = (UT:i)

TMξR:j = uTi ξR(rj) = Iij .

Hence, we have that:

uTi ξR(rj) = δij =

{
1 i = j

0 otherwise.

15

Using the definition of ψtpr(x), ψtpr(x) =
∑
i ξF (fm(i)) ⊗ ξR(ri), we apply the (tensor) inner

product of ψtpr(x) with ui:

ψtpr(x) =

(∑
i

ξF (fm(i))⊗ ξR(ri)

)
ui

=

(∑
i

ξF (fm(i))ξR(ri)
T

)
ui

=
∑
i

ξF (fm(i))δji

= ξF (fm(i)).

Thus, the embedding of the filler, fm(i), bound to each role, ri, can be recovered through use of a
tensor inner product with the unbinding vector, ui, corresponding to the i-th column of UT . Note
that the representational components of ψtpr(x), i.e., the embedded bindings, ψi(fm(i), ri) are fully
determined by the embedding of the role, ξR(ri), and filler, ξF (fm(i)), comprising the binding, as
ξF (fm(i), ri) simply corresponds to their tensor product. Thus, recovering (ξ(fm(i)), ξR(ri)) for
each binding in β(x) corresponds to recovering the representational component, ψi(fm(i), ri). So,
provided the set of role embeddings are linearly independent, and they can be obtained (e.g. through
a look-up table of role embeddings), all representational components, ψi(fm(i), ri) can be directly
recovered from the overall TPR representation, ψtpr(x).

A.3 Shortcomings of Symbolic Compositional Representations and How TPR Helps

Here, we provide a more detailed elaboration on the shortcomings of symbolic compositional
representations as outlined in 1 . We additionally illustrate how TPR-based continuous compositional
representations circumvent such limitations through use of a concrete example.

We employ the formal definition of a symbolic compositional representation from Section 3.1 ,
which states a representation, ψs(x), is a symbolic compositional representation if ψs(x) =(
ψ1(a1)

T , ..., ψn(an)
T
)T

, i.e., if ψs(x) corresponds to a concatenation of representational compo-
nents, {ψi(ai)}.

For more direct comparison between the symbolic compositional representation, ψs(x) and the
TPR-based compositional representation, ψtpr(x), we rewrite the TPR-based representation as
ψtpr(x) = ψ̃(ã1) + . . . + ψ̃n(ãn). Thus, the TPR can be viewed as an ordinary vector sum of
components, {ψ̃(ãi)}, where each component, ψ̃i corresponds to an embedded role-filler binding.

We consider the following example: suppose there are 2 FoV types (i.e., roles), colour, shape and 2
FoV values (i.e., fillers), purple, square. For the symbolic approach, suppose the representational

components, {ψi(ai)} are defined as follows: ψcolour(purple) =

[
1
0

]
and ψshape(square) =

[
2
3

]
.

For the distributed approach, suppose the (linearly independent) role embeddings are: ξR(colour) =[
1
2

]
, ξR(shape) =

[
1
1

]
, and the filler embeddings are: ξF (purple) =

[
1
1

]
and ξF (square) =

[
2
3

]
.

Then, a symbolic compositional representation is given by (denoting the concatenation operation by
⊕):

ψs(x) = ψcolour(purple)⊕ ψshape(square)

=

[
1
0

]
⊕
[
2
3

]
=

102
3

On the other hand, the distributed, TPR-based compositional representation is given by:

16

ψtpr(x) = ψ̃(purple/colour) + ψ̃(square/shape)

= ξF (purple)⊗ ξR(colour) + ξF (square)⊗ ξR(shape)

=

112
2

+

232
3

 =

343
4

Note that both the symbolic and distributed, TPR-based representations share the same underlying
representational space, i.e., R4.

1. Gradient Flow and Learning

6
 : The symbolic compositional representation allocates the

FoVs to 2 distinct, independent slots of ψd(x). This creates discrete boundaries between the
first two and last two dimensions of the representation, which may potentially complicate
gradient-based optimisation for the following reasons:

(a) Discrete Boundaries and Restricted Gradient Flow: In the symbolic compositional
representation, each FoV is confined to specific, non-overlapping dimensions of the
representation. This type of assignment means that updates to a particular FoV requires
restricting gradient flow exclusively to the dimensions associated with its designated
slot. For example, updating the FoV for square/shape requires modifying the last
two dimensions (i.e., permitting gradient flow through these two dimensions), while
keeping the first two dimensions unchanged (i.e., completely restricting gradient flow
through these two dimensions). This constrains gradient flow across all dimensions of
representation. Mathematically, the gradient update for the above example (modifying
square/shape) can be expressed in the symbolic case as:

−η∇θsL(θs) = −η

00a
b

 , where a, b ∈ R

which categorically restricts gradient flow dimensionwise across the underlying repre-
sentation space, R4.

(b) Abrupt, Discontinuous Shifts in the Representational Space: When multiple FoVs
are updated consecutively, the symbolic, slot-based representational form may induce
sudden and discontinuous changes in the representational space. For instance, updating
purple/colour at time t and then shape/square at t+ 1 produces:

ψs(x)t = ψs(x)t−1 − η

00a
b

ψs(x)t+1 = ψs(x)t − η

cd0
0

These abrupt shifts in the representation space may contribute to unstable and frag-
mented learning dynamics, potentially hindering the convergence of optimisation
algorithms.

6Please note there is a small error in the main Author Rebuttal https://openreview.net/forum?id=
oEVsxVdush¬eId=GiOPkcNVts in L16 under section ‘1) Incompatibility between disentangled repre-
sentations and deep learning’s continuous vector spaces’, where the tensor product is mistakenly taken
over ψcol(purple) ⊗ ψsh(square) to produce the representation, instead of computing ξF (purple) ⊗
ξR(col) + ξF (square) ⊗ ξR(sh), but the conclusion remains exactly the same. (Note that ψcol(purple) =
ξF (purple) ⊗ ξR(col) and ψsh(square) = ξF (square) ⊗ ξF (sh) should both be 4-dimensional, not 2-
dimensional.

17

https://openreview.net/forum?id= oEVsxVdush¬eId=GiOPkcNVts
https://openreview.net/forum?id= oEVsxVdush¬eId=GiOPkcNVts

In contrast, the continuous, distributed, TPR-based compositional representation integrates
the FoVs continuously into all dimensions of the representation (i.e., ψ̃(purple/colour) =
(1 1 2 2)T and ψ̃(square/shape) = (2 3 2 3)T are summed together in R4), eliminating the
necessary existence of dimension-wise slots with non-differentiable boundaries for each
FoV. This alleviates the previously mentioned problems:
(a) Smoother Gradient Flow: The inherently distributed structure of the TPR allows gra-

dients to flow freely across all dimensions of the representational space, R4. Updating
the FoV for square/shape involves modifying all relevant dimensions simultaneously,
avoiding categorical dimension-wise restrictions and potentially allowing for more
flexible and effective gradient-based optimisation as FoVs can be updated in a coor-
dinated manner (note that backpropagating through the dimensions corresponding to
square/shape can also affect purple/colour, as the same dimensions are occupied):

−η∇θcL(θc) = −η

â

b̂
ĉ

d̂

 , where â, b̂, ĉ, d̂ ∈ R

(b) Smoother Learning Dynamics: By forgoing the slot-based structure, a distributed
encoding of compositional structure ensures that update transitions between FoVs do
not cause sudden shifts in the representational space. For example:

ψtpr(x)t = ψtpr(x)t−1 − η

ât−1

b̂t−1

ĉt−1

d̂t−1

ψtpr(x)t+1 = ψtpr(x)t − η

ât
b̂t
ĉt
d̂t

 ,

potentially promoting more stable and reliable convergence during training.
2. Representational Expressivity: In the example above, both ψs(x) and ψtpr(x) reside in R4.

However, the symbolic, slot-based compositional representation, ψs(x) restricts each FoV
to a specific, 2-dimensional subset (i.e., ψcolour(purple), ψshape(square) each belong to
R2). This rigid allocation limits expressivity as each FoV is confined to a subset of available
dimensions, preventing the full utilisation of R4. In contrast, an inherently distributed
approach allows each FoV – such as ψ̃(purple/colour), ψ̃(square/shape) – to exist within
the same R4 space as the overall representation, ψtpr(x). This allows the representation
learner to encode FoVs as combinations of the entire set of 4-dimensional basis vectors
spanning the representational space, offering enhanced expressivity.

3. Robustness to Noise: In symbolic compositional representations, the impact of dimension-
wise noise has a localised sensitivity: since each FoV is isolated within its designated slot,
noise directly degrades the representation of the corresponding FoV. For example, a small
perturbation in the third dimension (assigned to square/shape) has a localised, direct effect
only on this FoV. In contrast, for the inherently distributed TPR-based structure, noise
introduced to any dimension of the representation is distributed across multiple FoVs. For
example, for ψtpr(x), the same perturbation in the third dimension will have its impact
distributed across both square/shape and purple/colour, as both these FoVs contribute to
that dimension.

A.4 TPR’s Distributed Nature and the Equivalence between Degenerate TPRs and Symbolic
Representations

The TPR offers an inherently distributed representation of compositional structure, allowing in-
formation from multiple FoVs to intermingle across the same dimensions of the representational
space.

18

Here, we elaborate on 2 critical properties of the TPR in relation to this notion of a distributed
embedding of compositional structure.

1. Equivalence of Degenerate TPRs to Concatenated Fillers: While the TPR naturally
supports a distributed encoding of compositional structure, it is worth noting that when the
role embedding vectors are aligned with the canonical basis vectors, the TPR reduces to
concatenated filler vectors, thereby reducing to a symbolic compositional representation
where the representational components ψi(ai) correspond to filler embeddings. In contrast
to the TPR, however, it is impossible for a symbolic compositional representations to encode
compositional structure in a distributed fashion.

2. Distributed Representation through Dense Role Vectors: In the general case where the
role vectors are linearly independent (but do not correspond to the canonical basis), provided
that the role vectors are dense, then TPRs facilitate a truly distributed representation by al-
lowing each dimension of the representation to encapsulate a summation of information from
multiple fillers. Such a representation is not reducible to a dimension-wise concatenation of
fillers, as in the degenerate TPR case.

We now prove both statements:

Equivalence of Degenerate TPRs to Concatenated Fillers:

Let {e1, e2, . . . , eDR
} denote the canonical basis vectors in RDR , where each ek has a 1 in the k-th

position and 0s elsewhere.

Assume that each role vector ri = ei for i = 1, 2, . . . , NR.

The tensor product fm(i) ⊗ ri results in a matrix where the i-th column is fm(i) and all other columns
are zero vectors:

fm(i) ⊗ ri = fm(i)e
⊤
i =

0 · · · f1i · · · 0
0 · · · f2i · · · 0
...

...
...

0 · · · fDF
i · · · 0

Summing over all NR role-filler bindings in β(x) gives the required result:

ψtpr(x) =
∑
i=1

fm(i) ⊗ ei =

f11 f12 · · · f1DR

f21 f22 · · · f2DR

...
...

. . .
...

fDF
1 fDF

2 · · · fDF

DR

This shows that in the case where the role vectors correspond to the canonical basis vectors, the
the TPR effectively concatenates the filler vectors fi along distinct, non-overlapping subsets of
representational dimensions. Consequently, the TPR ψtpr(x) behaves equivalently to a symbolic,
slot-based compositional structure where each filler occupies a unique representational slot without
interacting with other fillers, hence validating the equivalence of degenerate TPRs to concatenated
fillers.

Distributed Representation through Dense Role Vectors:

Assume that the role vectors {r1, r2, . . . , rN} in RDR are dense and linearly independent but are not
aligned with the canonical basis vectors.

Each tensor product fm(i)⊗ ri yields a matrix where each element (j, k) is f jm(i)r
k
i . Summing across

all role-filler bindings yields:

ψtpr(x) =
∑
i=1

fm(i)⊗ ri =

∑
i=1 f

1
m(i)r

1
i

∑
i=1 f

1
m(i)r

2
i · · ·

∑N
i=1 f

1
m(i)r

DR
i∑N

i=1 f
2
m(i)r

1
i

∑N
i=1 f

2
m(i)r

2
i · · ·

∑N
i=1 f

2
m(i)r

DR
i

...
...

. . .
...∑N

i=1 f
DF

m(i)r
1
i

∑N
i=1 f

DF

m(i)r
2
i · · ·

∑N
i=1 f

DF

m(i)r
DR
i

Given that role vectors are dense, each element ψj,ktpr incorporates contributions from multiple fillers
f jm(i), each weighted by the respective component rki of their role vectors. This intermingling ensures

19

that information from different filler vectors are distributed across the same dimensions of ψtpr(x),
rather than being confined to distinct subsets of ψtpr(x)’s dimensions, as in the degenerate TPR case.

B Soft TPR Framework

In this section, we provide additional information regarding our Soft TPR framework.

B.1 Shortcomings of the TPR and How Soft TPR Helps

In this subsection, we discuss potential practical limitations of traditional TPR due to their rigid
specification (Eq 1) and demonstrate how Soft TPR addresses these issues using a concrete example.

Consider the following set of roles R = {shape, colour}, and fillers F = {red,blue, square}, with
embedding functions ξR : R→ R2 and ξF : F → R3 defined as:

ξR(shape) =

[
1
0

]
,

ξR(colour) =

[
1
1

]
,

ξF (red) =

[
1
2
3

]
,

ξF (blue) =

[
2
2
3

]
,

ξF (square) =

[
0
0
1

]
,

1. Discrete Mapping: The set of possible TPRs T generated by these roles and fillers is limited
to discrete points. For instance:

ψtpr(xred_square) = ξF (red)⊗ ξR(colour) + ξF (square)⊗ ξR(shape)

=

[
1
2
3

]
⊗
[
1
1

]
+

[
0
0
1

]
⊗
[
1
0

]
∼=

1
2
3
1
2
3

+

0
0
1
0
0
0

=

1
2
4
1
2
3

20

ψtpr(xblue_square) = ξF (blue)⊗ ξR(colour) + ξF (square)⊗ ξR(shape)

=

[
2
2
3

]
⊗
[
1
1

]
+

[
0
0
1

]
⊗
[
1
0

]
∼=

2
2
3
2
2
3

+

0
0
1
0
0
0

=

2
2
4
2
2
3

Thus, T = {(2 2 4 2 2 3)T , (1 2 4 1 2 3)T }, a discrete subset of R6. By relaxing the
TPR specification to the Soft TPR, we allow any z ∈ R6 within an ϵ-neighbourhood of
some ψtpr in T , thereby forming continuous regions defined as: TS := {(2 2 4 2 2 3)T +
α, (1 2 4 1 2 3)T + α : |α| < ϵ}. This relaxation significantly expands the representational
space, as TS has strictly more points than T . Consequently, learning theoretically becomes
easier because there are more functions parameterising the mapping from the observed data
to TS compared to T . Furthermore, in contrast to T , which contains discrete, singular points
scattered throughout R6, TS comprises continuous spherical regions centered around each
ψtpr ∈ T . These factors collectively make the Soft TPR representation potentially easier to
learn and extract information from compared to the TPR. This advantage is reflected in our
empirical results in Section C.6.3 , where the Soft TPR demonstrates 1) greater representation
learner convergence, 2) superior sample efficiency for downstream tasks, and 3) superior
raw downstream performance in the low sample regime compared to the traditional TPR.
Additionally, our ablation results in Table 43 indicate that imposing stricter constraints on
the encoder to produce representations in the form of explicit TPRs substantially impairs the
disentanglement of the resulting representations.

2. Quasi-Compositional Structure: The traditional TPR enforces a strict algebraic definition
of compositionality, specifically of the form

∑
i ξF (fm(i)) ⊗ ξR(ri). However, even in

algebraically-structured domains such as natural language, compositional structures do not
always adhere to this rigid specification. For instance, French liaison consonants consist
of a weighted sum of fillers bound to a single role [9], which deviates from the strict
TPR formulation. The Soft TPR’s continuous relaxation of this constraint permits the
representation of structures that only approximately satisfy the TPR’s algebraic definition of
compositional structure as a set of discrete role-filler bindings. Consequently, Soft TPRs can
encode forms of quasi-compositionality that are not strictly algebraically precise or directly
amenable to TPR-based symbolic expression (see B.2 for a proof).

3. Duality: Although Soft TPRs employ a relaxed structural specification to encode quasi-
compositional structures, they inherently preserve the exact algebraic form of composi-
tionality through their corresponding explicit TPRs, ψ∗

tpr, via quantisation using the TPR
Decoder. In other words, while Soft TPRs facilitate approximate and flexible compositional
representations, they retain the capability to revert to the precise algebraic structures defined
by traditional TPRs when necessary. This dual functionality ensures that Soft TPRs strike a
balance between the flexibility required to represent complex, approximately compositional
structures—which benefits learning through relaxed representational constraints—and the
preservation of exact algebraic forms essential for symbolic manipulation and interpretation.

4. Serial Construction: Building explicit TPRs requires that the embedded fillers and roles
comprising a binding (i.e. (ξF (fm(i)), ξR(ri))) are first tokened before the entire compo-
sitional representation, ψtpr(x) can be produced [19 , 23 , 28 , 34 , 38 , 51 , 52]. This sort of
sequential approach, where constituents must be tokened before the compositional represen-
tation can be formed, is a key characteristic of the symbolic representation of compositional
structure [45]. In contrast, the Soft TPR allows the Encoder to produce any arbitrary element
of VF ⊗ VR (in this case ∼= R6), provided that the sufficient closeness requirement holds.
Thus, once the Encoder is trained, it is theoretically possible for the Soft TPR Autoencoder

21

to generate approximately compositional representations by mapping directly from the data
to a Soft TPR in a single step, without needing to token any representational constituents.

B.2 Proof that Soft TPRs Do Not Necessarily Have the Explicit Form of a TPR

It is intuitive that Soft TPRs, due to their continuous relaxation, do not necessarily conform to the
explicit algebraic form

∑
i ξF (fm(i))⊗ ξR(ri) required by traditional TPRs. We provide a formal

proof for completeness.

Proof. Let ξR : R→ VR and ξF : F → VF be fixed role and filler embedding functions, respectively.
A traditional TPR is defined as:

ψtpr(x) =
∑
i

ξF (fm(i))⊗ ξR(ri),

where m(i) is a matching function assigning each role ri to a filler fm(i).

A Soft TPR z is any element within an ϵ-neighborhood of some traditional TPR in VF ⊗ VR:

z ∈ Bϵ(ψtpr) = {z ∈ VF ⊗ VR | ∥z − ψtpr∥ < ϵ} ,

where ϵ > 0.

Suppose, for contradiction, that every Soft TPR z ∈ Bϵ(ψtpr) can be expressed as another traditional
TPR with a different matching function m′:

z =
∑
i

ξF (fm′(i))⊗ ξR(ri).

Given that ξR and ξF are fixed, varying m′ only changes the assignment of fillers to roles without
altering the underlying embeddings.

Let δ = z − ψtpr, where ∥δ∥ < ϵ. Substituting, we obtain:∑
i

ξF (fm′(i))⊗ ξR(ri) = ψtpr + δ.

Since δ ̸= 0, this equality implies:∑
i

ξF (fm′(i))⊗ ξR(ri) ̸= ψtpr.

However, because ξR and ξF are fixed, the only way to satisfy this equality is if the matching function
m′ compensates exactly for δ. This is generally impossible due to the following constraints:

1. Fixed Embeddings: m′ can only reassign fillers to roles without altering ξR(ri) or
ξF (fm(i)).The fixed ξF (fm(i)) restrict the possible variations, making it infeasible to ac-
count for arbitrary δ through mere reassignment.

2. Dimensionality and Span: In high-dimensional spaces VF ⊗ VR, δ may lie outside the
span of all traditional TPRs generated by varying m′, especially as ϵ increases.

Consequently, the perturbation δ cannot be exactly compensated by any reassignment m′, leading to
a contradiction. Therefore, Soft TPRs with non-zero ϵ-distances from their corresponding quantised
TPRs, ψ∗

tpr, are also not necessarily expressible as other TPRs in the same underlying space.

The introduction of a continuous relaxation in Soft TPRs ensures that they do not strictly adhere to
the traditional TPR’s explicit algebraic form. This allows Soft TPRs to represent quasi-compositional
structures that deviate from strict algebraic compositionality, which extends distributed compositional
representations beyond the formal, explicitly algebraic domains required by traditional TPRs.

22

B.3 Alternative Formulations

In contrast to the greedily optimal analytic form of ψ∗
tpr derived in Equation 5 , a globally optimal TPR

with respect to ||z−ψtpr||F can also be formulated. By fixing the sets of fillers F and roles R, along
with the embedding functions ξF : F → RDF and ξR : R→ RDR , the only degree of freedom lies
in defining M∗, the set of role-filler matching functions that specify permissible role-filler binding
decompositions for x ∈ X . The globally optimal TPR that best approximates z, denoted ψopttpr , is
given by:

ψopttpr := argmin
ψtpr∈T

∥z − ψtpr∥F , (10)

where T :=
{∑

i ξF (fm(i))⊗ ξR(ri)
}
m∈M∗ denotes the set of all possible traditional TPRs defined

by the choices of F , R, ξF , ξR, and M∗. For clarity, we omit the dependency of both ψtpr and m on
x.

If M∗ is a restricted subset of the entire set of matching functions M, meaning there are constraints
on which fillers can be bound to which roles, then solving Equation 10 is NP-complete. Conversely, if
M∗ = M, allowing any filler to be bound to any role with possible reuse, the optimisation simplifies
significantly. In this unrestricted scenario, the problem reduces to independently assigning each role
to the filler that minimises the local contribution to ||z−ψtpr||F , which can be solved efficiently with
a time complexity of O(NR ×NF). Acknowledging the impracticality of exact global optimisation,
and guided by the intuition that ψ∗

tpr should have an explicit dependency on z, we propose the
greedily optimal definition of ψ∗

tpr in Equation 5 , which links the unbound soft fillers of z, {f̃i}, to
ψ∗
tpr.

B.4 Soft TPR Autoencoder

Defining m(i) := argminj ∥f̃k − ξF (fj)∥2 in Equation 5 allows any filler fj to bind to a role ri,
which may not preserve the ground-truth semantics of the role-filler bindings in the image. To address
this, the Soft TPR Autoencoder targets two objectives jointly: 1) Representational Form, ensuring the
output resembles a Soft TPR, and 2) Representational Content, ensuring sensible role-filler bindings
reflecting ground-truth semantics.

B.4.1 Representational Form

We now describe how our method satisfies the representational form property. As detailed in Section
4.2, we penalize the Euclidean distance between the encoder E’s output z and the explicit TPR ψ∗

tpr
defined in Equation 5 . This penalty encourages the Soft TPR Autoencoder to produce encodings that
resemble a Soft TPR by enforcing ∥z − ψtpr∥2 < ϵ

7
 . To obtain ψ∗

tpr, we employ our TPR decoder,
which consists of three modules: 1) Unbinding, 2) Quantization, and 3) TPR Construction.

1) Unbinding: Although multiple roles can bind to the same filler (e.g., object colour/magenta
and floor colour/magenta), each role represents an independent concept type. Therefore, we
use linearly independent embedding vectors for roles to ensure the recoverability of embedded
components (ξF (fm(i)), ξR(ri)) from the TPR. Typically, a randomly initialised role embedding
matrix MξR ∈ RDR×NR with DR ≫ NR will have linearly independent columns. To maintain this
property during training, it is possible to apply orthogonality regularisation: ∥MT

ξR
MξR − I∥F .

However, using arbitrary linearly independent role embeddings poses a computational challenge in
obtaining U , the (left) inverse of MξR , necessary for unbinding vectors {ui}. To address this, we
utilise semi-orthogonal matrices A ∈ Rd×n where ATA = I . In this case, UT = MξR , and the
unbinding vector ui is simply the role embedding ξR(ri). Thus, unbinding a soft filler from z bound
to role ri involves taking the tensor inner product between z and ξR(ri).

7We assume vector spaces over the reals and utilise the isomorphism RDF ⊗ RDR ∼= RDF ·DR to integrate
the TPR framework with the autoencoding framework.

23

To implement this, our unbinding module initialises MξR as a dense, semi-orthogonal matrix using
torch.nn.utils.parameterizations.orthogonal and keeps MξR fixed during training to preserve its
semi-orthogonal property

8
 .

Now, we proceed to formally prove the aforementioned semi-orthogonality properties.

We first prove that for a (left-invertible) semi-orthogonal matrix, A ∈ Rd×n, ATA = In×n.

Proof. Let A denote a (left-invertible) semi-orthogonal matrix of dimension Rd×n. Writing A out
using its columns, {a1, . . . , an}, we have:

ATA =

a
T
1
...
aTn

 (a1 · · · an)

As the columns {a1, . . . , an} are orthonormal, we have that: ai · aj = δij , where · denotes the dot
product, and

δij =

{
1 i = j

0 otherwise,

from which the result clearly follows.

For completeness, we also prove that ui corresponds to the i-th role embedding vector, though this
follows rather trivially from the properties of semi-orthogonal matrices, and the definition of ui.

Proof. Let MξR be a (left-invertible) semi-orthogonal matrix. Then, from the properties of semi-

orthogonal matrices proved earlier, we have that MT
ξR
MξR = I , and so, UT =

(
MT
ξR

)T
= MξR .

Hence, the i-th column of UT , which corresponds to the unbinding vector, ui, by definition, is simply
(MξR):i = ξR(ri), the i-th role embedding vector.

2) Quantisation

The quantisation module utilises the VQ-VAE algorithm [11] to learn the filler embedding matrix
MξF and to quantise the soft filler embeddings {f̃i} into explicit embeddings {ξF (fi)} based on
the closest Euclidean distances. This process aligns with the matching function m in Equation 5 ,
where each soft filler f̃i is assigned to the nearest explicit filler in MξF . Since quantisation involves
an argmax operation and is non-differentiable, VQ-VAE employs an L2 codebook loss to adjust the
embedding vectors towards the soft fillers and a commitment loss to ensure the encoder commits to
specific embeddings, preventing the embedding space from expanding indefinitely.

For further details on the quantisation process, refer to [11].

3) TPR Construction

The TPR construction module is parameter-free and deterministically binds the quantised filler
embeddings {ξF (fm(i))} to their corresponding role embeddings {ξR(ri)} from MξR , forming the
explicit TPR:

ψ∗
tpr =

∑
i

ξF (fm(i))⊗ ξR(ri).

B.4.2 Representational Content

Here, we explicitly define the ‘swapped’ TPRs, ψstpr(x) and ψstpr(x
′), used in our weakly supervised

reconstruction loss (second term of Equation 7). For image pairs (x, x′) sharing all role-filler bindings

8Astute readers may notice that the explicit TPRs our representation learner uses are rotationally isomorphic
to the degenerate TPR case (i.e., concatenation of fillers). See C.6.1 for further discussion.

24

except for role ri, we construct the swapped TPRs by exchanging the quantised filler embeddings for
ri:

ψstpr(x) =
∑
j ̸=i

ξF (fm(j))⊗ ξR(rj) + ξF (fm′(i))⊗ ξR(ri), (11)

ψstpr(x
′) =

∑
j ̸=i

ξF (fm′(j))⊗ ξR(rj) + ξF (fm(i))⊗ ξR(ri), (12)

where m and m′ are the matching functions for x and x′, respectively.

B.4.3 Model Architecture

We now provide concrete details of our model architecture in Table 8 , 9 and Table 10 . It is worth
noting that Soft TPR Autoencoder only adds an additional DF · NF parameters to a standard
(variational) autoencoding framework consisting of the encoder and decoder as the only learnable
parameters we introduce are in the filler embedding matrix, MξF .

For all our experiments, we use the same general architecture for the encoder, E, the TPR decoder,
and the decoder, D.

Table 8: Encoder (E) architecture.

Encoder

Input 64× 64× c
Conv 32, 4× 4, stride = 2, padding = 1

BatchNorm 32
ReLU 32

Conv 64, 4× 4, stride = 2, padding = 1
BatchNorm 64

ReLU 64
Conv 256, 4× 4, stride = 2, padding = 1

BatchNorm 256
ReLU 256

Conv 512, 4× 4, stride = 2, padding = 1
BatchNorm 512

ReLU 512
Flatten 512× 4× 4

Linear 1024
ReLU 1024
Linear 512
ReLU 512
Linear 512
ReLU 512

Linear DF ·DR

Table 9: TPR Decoder architecture.

TPR Decoder

Role embedding matrix (fixed) DR ×NR
Filler embedding matrix DF ×NF

25

Table 10: Decoder (D) architecture.

Decoder

Input DF ·DR

ConvTranspose 512, 4× 4, stride = 2,padding = 1
BatchNorm 512

ReLU 512
ConvTranspose 256, 4× 4, stride = 2,padding = 1

BatchNorm 256
ReLU 256

ConvTranspose 64, 4× 4, stride = 2,padding = 1
BatchNorm 64

ReLU 64
ConvTranspose 32, 4× 4, stride = 2,padding = 1

BatchNorm 32
ReLU 32

ConvTranspose 3, 4× 4, stride = 2,padding = 1

B.5 Model Hyperparameters and Hyperparameter Tuning

The Soft TPR Autoencoder has the following tunable hyperparameters:

Architectural Hyperparameters:
NR, NF , DR, DF

These correspond to the number of role and filler embedding vectors and the dimensionalities of their
respective embedding spaces.

Loss Function Hyperparameters:
β (which weights the VQ-VAE commitment loss as per Equation 6 and)
λ1, λ2 (which weigh the unsupervised and supervised losses in Equation 7)

Following the VQ-VAE framework [11], we set β, the coefficient for the commitment loss, to 0.5.
To ensure fair comparisons with scalar-tokened generative baselines and COMET, which assume 10
FoV types (and VCT assumes 20), we fix NR = 10.

We optimise the remaining hyperparameters using the Weights and Biases (WandB) hyperparameter
sweep framework. The optimisation employs Bayesian search with the unsupervised MSE reconstruc-
tion loss from Equation 6 as the criterion. During this optimization, models are trained for between
50,000 and 100,000 iterations.

The final hyperparameter values for the Soft TPR Autoencoder are listed in Table 11 . For ablation
experiments demonstrating the model’s robustness to different hyperparameter settings, refer to
Section C.6.4 .

Table 11: Hyperparameter values.

Hyperparameter
Cars3D Shapes3D MPI3D

Architectural hyperparameters

DR 12 16 12
NR (fixed) 10 10 10

DF 128 32 32
NF 106 57 50

Loss function hyperparameters

λ1 0.00024 0.00091 0.0000
λ2 0.02200 0.00228 1.16050

β (fixed) 0.5 0.5 0.5

Our model is implemented in Pytorch [27] and trained using the Adam optimiser on the loss
corresponding to 7 . We use a learning rate of 1e−4, and the default setting of (β1, β2) = (0.9, 0.999)
across all instances of model training.

26

C Results

In this section, we provide additional details about our experiments, and present additional results.

C.1 Datasets

For disentanglement, we utilise standard disentanglement datasets: Cars3D [4], Shapes3D [24], and
the ‘real’ variant of MPI3D [21], containing 3, 6, and 7 ground-truth FoVs respectively. These
datasets are procedurally generated via taking the Cartesian product of all possible FoV values per
FoV type. Metadata is provided in Tables 12 , 13 and 14 , with continuous-valued FoV types marked
by ‡. We treat colour FoVs as continuous variables due to their 10 linearly spaced, naturally ordered
values, in line with [42].

Table 12: Cars3D dataset
FoV types FoV values

Car type 199 types
Rotation‡ 24 angles

Camera elevation‡ 4 types

Table 13: Shapes3D dataset
FoV types FoV values

Floor colour‡ 10 colours
Wall colour‡ 10 colours

Object colour‡ 10 colours
Object size‡ 8 sizes
Object type 4 shapes
Azimuth‡ 15 angles

Table 14: MPI3D dataset
FoV types FoV values

Object colour 6 colours
Object shape 6 shapes
Object size‡ 2 sizes

Camera height 3 heights
Background colour 3 colours

Horizontal axis‡ 40 values
Vertical axis‡ 40 values

For the downstream regression task, we use these disentanglement datasets and train downstream
models to regress on each dataset’s continuous-valued FoVs, as indicated by the ‡ symbol in Tables

 12 , 13 and 14 . For abstract visual reasoning [30], we employ the Raven’s Progressive Matrix (RPM)
style dataset from [30], where each sample consists of 8 context panels and 6 answer panels derived
from Shapes3D images. The model must infer abstract visual relations from the context panels to
select the correct answer among six options.

C.2 Baseline Implementations and Experimental Settings

C.2.1 Experiment Compute Resources

For the generative weakly supervised, scalar-valued baselines (i.e., AdaGVAE-k, GVAE, MLVAE,
SlowVAE, the Shu model), and our model, we perform model training on a single Nvidia RTX4090
GPU. We also perform all associated experiments for these models (i.e., downstream model training,
downstream model evaluation, disentanglement evaluation, etc.) on this single Nvidia RTX4090
GPU. Our model takes approximately 1.5 hours to fully train (i.e., run 200,000 iterations) on the
Cars3D and Shapes dataset, and approximately 4.0 hours to fully train on the MPI3D dataset.

For the vector-valued baselines of COMET and VCT, we perform model training, and all associated
experiments on a single Nvidia V100 GPU.

C.2.2 Disentanglement Models

For the generative weakly supervised scalar-valued baselines (AdaGVAE-k, GVAE, MLVAE, Slow-
VAE, Shu model) and our model, training and all related experiments (downstream training, eval-
uation, disentanglement) were conducted on a single Nvidia RTX4090 GPU. Our model requires
approximately 1.5 hours to train (200,000 iterations) on the Cars3D and Shapes datasets, and about
4.0 hours on the MPI3D dataset.

Vector-valued baselines COMET and VCT were trained and evaluated on a single Nvidia V100
GPU. We utilised the PyTorch-based open-source implementations from [42] for Ada-GVAE, GVAE,
MLVAE, and SlowVAE, verified to reproduce reported results. Official implementations from the
authors were used for COMET and VCT [36 , 47]. For the GAN-based Shu model, we converted the
TensorFlow implementation from [35] to PyTorch and ensured it reproduced official results. Baseline
models employed recommended hyperparameters; otherwise, hyperparameter tuning was conducted
using the same Weights and Biases (WandB) hyperparameter sweep as our model.

As discussed in Section 5, all weakly supervised baselines except Ada-GVAE assume access to I , the
differing FoV between each pair (x, x′), matching our model’s supervision level. To make Ada-GVAE

27

comparable, we modified it to receive the ground-truth k = |I|, the number of changing FoVs per
sample, termed Ada-GVAE-k. This adjustment resulted in superior or comparable performance to the
original Ada-GVAE. All models, except SlowVAE (which assumes all FoVs change), were trained
with k = 1, ensuring consistent training conditions across models.

For each model’s selected hyperparameters, including our own, we trained five models using five
random seeds and aggregated the results. All models were trained for 200,000 iterations on each
dataset.

C.2.3 Downstream Models

For FoV regression, following [42], we use a simple, generic MLP model, with the architecture listed
in Table 15 . For each disentanglement dataset, the MLP regression model receives representations of
images produced by a representation learner, and is trained to predict the ground-truth FoV values in
a supervised fashion. Performance is measured using the R2 score on a held out, randomly selected
test set of 1,000 samples.

For each representation learning model instantiated with a random seed, we train 2 MLPs by uniformly
sampling the number of output nodes in the first, second, and fifth layers as specified in Table 15 ,
resulting in a total of 10 MLPs per learner (we use 5 random seeds). Reported results are averaged
over these models. Notably, the MLPs have no prior knowledge of the representation type (e.g.,
scalar-tokened symbolic, vector-tokened symbolic, or fully continuous compositional) since no
inductive biases or representation-specific optimisations are applied, aside from the supervised MSE
loss.

Each MLP is trained using the Adam optimiser with an MSE loss, a learning rate of 1× 10−4, and
default (β1, β2) = (0.9, 0.999) settings.

Table 15: MLP architecture
MLP

Linear d1, d1 ∈ [256, 512]
ReLU

Linear d2, d2 ∈ [256, 512]
ReLU

Linear dim(z)
ReLU

Linear dim(z)
ReLU

Linear d3, d3 ∈ [128, 256]
ReLU

Linear k

For the abstract visual reasoning task, following [30], we use the Wild Relation Network (WReN)
model [18] on representations produced by representation learners to predict ground-truth answers
for each RPM matrix. For each of model instances produced by a random seeds, we randomly
sample 2 possible configurations of the WReN model by uniformly sampling either 256 or 512 for
the edge MLP, g, and 128 or 256 hidden units for the graph MLP, f , in line with [30]. We however,
fix the number of hidden layers in g to 2, and f in 1, representing the smallest possible number
of hidden layers, to constrain the capacity of the WReN model. As we use 5 random seeds, and
sample 2 configurations per seed, we produce 10 WReN models for each representation learner. All
WReN models are trained using Adam optimisation on the BCE loss between the predicted logits and
ground-truth labels, with a learning rate of 1e−5 and the default setting of (β1, β2) = (0.9, 0.999).

C.2.4 Experimental Controls

To ensure that the performance improvements of our model are attributable to the distributed, flexible
nature of the Soft TPR framework, we implement controls to eliminate confounding variables.

Disentanglement Controls

To ensure performance gains in disentanglement metrics (Tables 16 and 17) are not attributable
to our model’s additional parameters (with our model’s the filler embedding matrix MξF , adding

28

13,568, 1,824, and 1,600 parameters for Cars3D, Shapes3D, and MPI3D respectively to a standard
autoencoding framework), we adjust baseline models with fewer parameters. Specifically, for
SlowVAE, Ada-GVAE-k, GVAE, ML-VAE, and the Shu model, we increase their parameters by
adding filters or layers until they match or exceed our model’s parameter count, denoted with ∗ in
Tables 16 and 17 . VCT and COMET are substantially more parameter hungry (10+ million) than
our model, so parameter controls are not applicable to these vector-valued symbolic compositional
baselines. Consistent with [40], we observe that increasing parameters in these generative, scalar-
tokened baselines does not enhance disentanglement performance. Therefore, we proceed with
representation learning convergence experiments and downstream model tests using the original
models, not the parameter-adjusted variants.

Downstream Task Controls

To ensure that any performance boosts on the downstream tasks of FoV regression and abstract
visual reasoning are not attributable to our representation’s increased dimensionality, we post-
process representations produced by all models (including models producing higher-dimensional
representations) to match the dimensionality of our representation. Specifically, generative, weakly
supervised models with scalar-tokened representations produce representations with a dimension of
10 for all datasets, whereas our Soft TPRs have dimensions of 1536 (Cars3D), 512 (Shapes3D), and
320 (MPI3D) of our Soft TPRs, highlighting the necessity of such a control.

To perform this control, we apply separate methods for the scalar-tokened and vector-tokened models.
For scalar-tokened models, we multiply each dimension k of the latent vector, lk with an random
embedding vector ek ∈ Rd from an fixed, randomly initialised, semi-orthogonal embedding matrix
E ∈ Rd×10, and subsequently concatenate all multiplied random embedding vectors together to
form the dimensionality-controlled representation, (l1ek, . . . , l10e10) ∈ R10d. d is a dataset specific
integer that ensures that the size of the dimensionality-controlled representation is at least as small
as the dimensionality of the Soft TPR representation for the given dataset, i.e., d := ⌈dim(z)⌉/10,
where z is the Soft TPR representation produced by a given dataset. Note that we choose a semi-
orthogonal embedding matrix with the intuition that this ensures the maximal distinguishability of
each continguous subset of dimensions corresponding to liei.

For COMET and VCT, which both produce vector-tokened representations, we consider alternative
methods of performing dimensionality-control. COMET’s representations have a dimensionality
of 640 for all datasets, and so, the model produces lower-dimensional representations than ours
for Shapes3D and Cars3D, but not MPI3D. VCT, on the other hand, produces representations with
dimension 5120, and so, produces higher-dimensional representations than ours for all datasets. For
any vector-tokened representation with higher dimensionality than our representation, we apply PCA-
based postprocessing to the model representation, reducing the dimensionality of each vector-tokened
value in the representation to the required dimensionality, d, where d := ⌈dim(z)⌉/dim(zbaseline),
before concatenating all PCA-reduced vectors together to produce the modified representation. For
any vector-tokened representation produced by COMET with lower dimensionality than ours, we
apply a simple matrix multiplication between the representation, and a randomly initialised matrix of
required dimensionality to embed the representation into the same-dimensional space as ours.

We denote the results produced by all such postprocessing by † in relevant tables, and indicate such
postprocessing in the captions of relevant plots.

C.3 Disentanglement

In reporting the disentanglement metric results for baseline models, we use published results where
applicable, i.e., we use the results published in [47] for VCT and COMET and the published results
for SlowVAE [39]. For GVAE, MLVAE, and Ada-GVAE-K, we evaluate disentanglement using the
Pytorch-based implementation of disentanglement metrics, [42], which corresponds to a Pytorch-
based implementation of the official disentanglement lib of [25]. We also use this implementation to
evaluate the disentanglement of representations produced by all models.

C.3.1 Disentanglement Metrics

In line with [47], we consider the following 4 disentanglement metrics: the FactorVAE score [24],
the DCI Disentanglement score [16] (we refer to DCI Disentanglement as DCI), the BetaVAE score
[10], and the MIG score [15]. We provide a brief overview of all 4 disentanglement metrics, and

29

refer interested readers to the papers these metrics are introduced in for further details, as well as the
Appendix of [25] for more details on how the metrics are implemented in [42] and [25].

FactorVAE Metric: A randomly selected FoV of the dataset is fixed, and a mini-batch of observations
is subsequently randomly sampled. The representation learner produces representations for the
samples. Disentanglement is quantified using the accuracy of a majority vote classifier that predicts
the index of the ground-truth fixed FoV based on the index of the representation vector with the
smallest variance.

DCI Metric: A Gradient Boosted Tree (GBT) is trained to predict the ground-truth FoV values from
representations produced by a representation learner. The predictive importance of the dimensions
of a representation is obtained using the model’s feature importances. For each sample, a score is
computed that corresponds to one minus the entropy of the probability that a dimension of the learned
representation is useful for FoV prediction, weighted by the relative entropy of the corresponding
dimension. An average of these scores over the mini-batch of samples is taken to produce the final
score.

BetaVAE Metric: This metric quantifies disentanglement by predicting the index of a fixed FoV from
representations produced by a representation learner, similar to the FactorVAE metric. In contrast to
the FactorVAE metric, however, the BetaVAE metric uses a linear classifier on difference vectors
to predict the index of the fixed FoV. Each difference vector is produced by taking the difference
between representations produced for a pair of samples (x, x′) with one underlying fixed FoV.

MIG Metric: For each FoV, the MIG metric computes the mutual information between each
dimension in the representation, and the corresponding FoV. The score is obtained by computing the
average, normalised difference between the highest and second highest mutual information of each
FoV with the dimensions of the representation.

C.3.2 Evaluating the Disentanglement of Soft TPRs

Since disentanglement metrics are typically computed under the assumption that the representation
corresponds to a concatenation of scalar-valued FoV tokens, we now detail how we compute
the above disentanglement metrics on the Soft TPR, a continuous compositional representation.
Similar amendments have been made in COMET and VCT, so that the disentanglement of their
representations, corresponding to a concatenation of vector-valued FoV tokens, can be computed.

FactorVAE metric: To compute the FactorVAE score of our Soft TPR, we produce aNR-dimensional
vector, v, for each Soft TPR, where NR corresponds to the number of roles, i.e. the FoV types. We
produce v by simply populating each dimension, vi, with the index of the quantised filler that role ri
is bound to, i.e. we set vi to m(i). We use the resulting v’s to compute the variances required by the
FactorVAE metric, noting that if the FoV type corresponding to role i is fixed, and this is reflected in
our representation, dimension i of the v vectors produced in a mini-batch should clearly have the
smallest variance, as all fillers, fm(i), that role ri binds to, will have the same identity across the
mini-batch.

DCI metric: As the DCI relies on computing the ground-truth FoV values from NR-dimensional
representations produced by the representation learner, we again, follow a similar procedure as the
above, in converting our (DF · DR)-dimensional Soft TPR representation to a NR-dimensional
representation. That is, we simply consider a NR-dimensional vector, v, where each dimension, vi, is
populated by the index of the quantised filler, m(i) that role ri is bound to, and use this vector to
compute the corresponding DCI result.

BetaVAE metric: For the BetaVAE metric, as each sample used to train the linear classifier consists
of a NR-dimensional difference vector obtained by computing the difference between the NR-
dimensional scalar-tokened compositional representations, we obtain the following difference vector,
d, for our Soft TPR representations. For each role i ∈ {1, . . . , NR}, we obtain the corresponding
quantised filler embeddings for each sample x, x′ in the pair, i.e., we obtain ξF (fm(i)), ξF (fm′(i)).
For each pair of quantised filler embeddings, we obtain a scalar distance measure corresponding to
the cosine similarity between the the pair. The i-th dimension of d is populated using this value. We
use difference vectors obtained in this way to compute the BetaVAE metric.

MIG metric: For the MIG metric, which relies on a discretisation of the values in each dimension i
of the NR-dimensional scalar-tokened compositional representations to compute the discrete mutual

30

information, we apply the same postprocessing technique as in the FactorVAE, and DCI metric, to
evaluate MIG on our Soft TPRs. That is, we produce the same NR-dimensional vector, v, noting that
this choice of postprocessing also performs the discretisation required by the MIG computation.

C.3.3 Full Results

We now present unabridged results for all considered disentanglement metrics, denoting the learnable
parameter control modification of each relevant baseline with the symbol ∗. As can be seen in
Tables 16 and 17 , our Soft TPR representations are explicitly more compositional (as quantified by
the disentanglement metric scores) compared to all considered baselines, with especially notable
performance increases on the more challenging datasets of Cars3D and MPI3D.

Table 16: FactorVAE and DCI scores

Models
Cars3D Shapes3D MPI3D

FactorVAE score DCI FactorVAE score DCI FactorVAE score DCI

Symbolic scalar-tokened compositional representations

Slow-VAE 0.902 ± 0.035 0.509 ± 0.027 0.950 ± 0.032 0.850 ± 0.047 0.455 ± 0.083 0.355 ± 0.027
Slow-VAE∗ 0.872 ± 0.038 0.518 ± 0.039 0.961 ± 0.028 0.867 ± 0.028 0.421 ± 0.091 0.317 ± 0.039

Ada-GVAE-k 0.947 ± 0.064 0.664 ± 0.167 0.973 ± 0.006 0.963 ± 0.077 0.496 ± 0.095 0.343 ± 0.040
Ada-GVAE-k∗ 0.931 ± 0.051 0.641 ± 0.179 0.932 ± 0.012 0.923 ± 0.108 0.451 ± 0.129 0.319 ± 0.056

GVAE 0.877 ± 0.081 0.262 ± 0.095 0.921 ± 0.075 0.842 ± 0.040 0.378 ± 0.024 0.245 ± 0.074
GVAE∗ 0.841 ± 0.123 0.219 ± 0.012 0.881 ± 0.129 0.810 ± 0.102 0.341 ± 0.067 0.216 ± 0.109

ML-VAE 0.870 ± 0.052 0.216 ± 0.063 0.835 ± 0.111 0.739 ± 0.115 0.390 ± 0.026 0.251 ± 0.029
ML-VAE∗ 0.881 ± 0.041 0.220 ± 0.051 0.823 ± 0.091 0.714 ± 0.091 0.401 ± 0.019 0.240 ± 0.043

Shu 0.573 ± 0.062 0.032 ± 0.014 0.265 ± 0.043 0.017 ± 0.006 0.287 ± 0.034 0.033 ± 0.008
Shu∗ 0.551 ± 0.062 0.019 ± 0.021 0.297 ± 0.031 0.020 ± 0.006 0.219 ± 0.057 0.029 ± 0.010

Symbolic vector-tokened compositional representations

VCT 0.966 ± 0.029 0.382 ± 0.080 0.957 ± 0.043 0.884 ± 0.013 0.689 ± 0.035 0.475 ± 0.005
COMET 0.339 ± 0.008 0.024 ± 0.026 0.168 ± 0.005 0.002 ± 0.000 0.145 ± 0.024 0.005 ± 0.001

Fully continuous compositional representations

Ours 0.999 ± 0.001 0.863 ± 0.027 0.984 ± 0.012 0.926 ± 0.028 0.949 ± 0.032 0.828 ± 0.015

Table 17: BetaVAE and MIG scores

Models
Cars3D Shapes3D MPI3D

BetaVAE score MIG BetaVAE score MIG BetaVAE score MIG

Symbolic scalar-tokened compositional representations

Slow-VAE 1.000 ± 0.000 (=) 0.104 ± 0.018 1.000 ±0.000 (=) 0.615 ± 0.045 0.666 ± 0.069 0.329 ± 0.026
Slow-VAE∗ 1.000 ± 0.000 (=) 0.071 ± 0.013 1.000 ±0.000 (=) 0.655 ± 0.067 0.629 ± 0.079 0.287 ± 0.045

Ada-GVAE-k 1.000 ± 0.000 (=) 0.395 ± 0.095 1.000 ± 0.000 (=) 0.556 ± 0.064 0.750 ± 0.053 0.213 ± 0.064
Ada-GVAE-k∗ 1.000 ± 0.000 (=) 0.321 ± 0.102 1.000 ± 0.000 (=) 0.498 ± 0.073 0.783 ± 0.061 0.241 ± 0.079

GVAE 1.000 ± 0.000 (=) 0.096 ± 0.036 0.998 ± 0.004 0.251 ±0.072 0.704 ± 0.072 0.145 ± 0.074
GVAE∗ 1.000 ± 0.000 (=) 0.100 ± 0.052 1.000 ± 0.000 0.203 ±0.089 0.681 ± 0.061 0.109 ± 0.087
MLVAE 1.000 ± 0.000 (=) 0.088 ± 0.020 0.976 ± 0.038 0.354 ± 0.165 0.703 ± 0.039 0.142 ± 0.062
MLVAE∗ 1.000 ± 0.000 (=) 0.050 ± 0.058 0.921 ± 0.052 0.298 ± 0.091 0.689 ± 0.041 0.096 ± 0.071

Shu 0.912 ± 0.022 0.025 ± 0.012 0.498 ± 0.064 0.005 ± 0.003 0.353 ± 0.040 0.013 ± 0.007
Shu∗ 0.923 ± 0.031 0.015 ± 0.009 0.512 ± 0.071 0.006 ± 0.002 0.327 ± 0.059 0.009 ± 0.011

Symbolic vector-tokened compositional representations

VCT 1.000 ± 0.000 (=) 0.117 ± 0.045 0.999 ± 0.0004 0.525 ± 0.028 0.844 ± 0.038 0.227 ± 0.048
COMET 0.343 ± 0.006 0.000 ± 0.000 0.166 ± 0.004 0.0002 ± 0.000 0.144 ± 0.005 0.000 ± 0.0001

Fully continuous compositional representations

Ours 1.000 ± 0.000 (=) 0.348 ± 0.0124 1.000 ± 0.000 (=) 0.471 ± 0.088 1.000 ± 0.000 0.620 ± 0.067

C.4 Representation Learning Convergence

We additionally examine representation learning convergence by evaluating the representations
produced at 100, 1,000, 10,000, 100,000, and 200,000 iterations of model training, where the latter
stage of 200,000 iterations corresponds to fully trained models. To quantify representation learning
convergence, we evaluate both 1) the explicit compositionality of representations produced at these
stages of training (as quantified by disentanglement metric performance), and 2) the usefulness of
these representations for the downstream tasks of FoV regression and abstract visual reasoning.

31

In all line plots, we plot the mean, and indicate the standard deviation by the shaded regions. We use
the same legend for all plots, where 0 (grey) denotes SlowVAE, 1 (orange) denotes AdaGVAE-k, 2
(green) denotes GVAE, 3 (red) denotes MLVAE, 4 (purple) denotes Shu, 5 (pink) denotes VCT, 6
(brown) denotes COMET, and 7 (blue) denotes our model, Soft TPR Autoencoder.

C.4.1 Disentanglement

We first present line plots of representation learner convergence for each of the four considered
disentanglement metrics (i.e., the FactorVAE, DCI, BetaVAE and MIG scores) for all three disentan-
glement datasets (Cars3D, Shapes3D, MPI3D). A series of tables containing the values associated
with these line plots is presented following the plots. As the disentanglement results produced
by our learnable parameter controls for the models of Ada-GVAE-k, GVAE, ML-VAE and Shu,
do not achieve superior disentanglement results compared to the original models, we only present
disentanglement convergence results for the original variants of all baseline models.

32

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

or
 sc

or
e

Cars3D 0
1
2
3
4
5
6
7

Figure 3: Factor score convergence on the Cars3D dataset

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

DC
I s

co
re

Cars3D 0
1
2
3
4
5
6
7

Figure 4: DCI score convergence on the Cars3D dataset

33

102 103 104 105

Iteration count

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
ta

 sc
or

e

Cars3D 0
1
2
3
4
5
6
7

Figure 5: BetaVAE score convergence on the Cars3D dataset

102 103 104 105

Iteration count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
IG

 sc
or

e

Cars3D 0
1
2
3
4
5
6
7

Figure 6: MIG score convergence on the Cars3D dataset

34

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

or
 sc

or
e

Shapes3D 0
1
2
3
4
5
6
7

Figure 7: Factor score convergence on the Shapes3D dataset

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

DC
I s

co
re

Shapes3D 0
1
2
3
4
5
6
7

Figure 8: DCI score convergence on the Shapes3D dataset

35

102 103 104 105

Iteration count

0.2

0.4

0.6

0.8

1.0

Be
ta

 sc
or

e

Shapes3D 0
1
2
3
4
5
6
7

Figure 9: BetaVAE score convergence on the Shapes3D dataset

102 103 104 105

Iteration count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
IG

 sc
or

e

Shapes3D 0
1
2
3
4
5
6
7

Figure 10: MIG score convergence on the Shapes3D dataset

36

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

or
 sc

or
e

MPI3D 0
1
2
3
4
5
6
7

Figure 11: Factor score convergence on the MPI3D dataset

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

DC
I s

co
re

MPI3D 0
1
2
3
4
5
6
7

Figure 12: DCI score convergence on the MPI3D dataset

37

102 103 104 105

Iteration count

0.2

0.4

0.6

0.8

1.0

Be
ta

 sc
or

e

MPI3D 0
1
2
3
4
5
6
7

Figure 13: BetaVAE score convergence on the MPI3D dataset

102 103 104 105

Iteration count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
IG

 sc
or

e

MPI3D 0
1
2
3
4
5
6
7

Figure 14: MIG score convergence on the MPI3D dataset

38

Table 18: Representation learner convergence on the Cars3D dataset (Factor score)

Models Factor score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.455 ± 0.020 0.546 ± 0.043 0.624 ± 0.050 0.713 ± 0.054 0.743 ± 0.046
Ada-GVAE-k 0.460 ± 0.024 0.642 ± 0.031 0.755 ± 0.042 0.873 ± 0.077 0.904 ± 0.082

GVAE 0.478 ± 0.026 0.560 ± 0.036 0.641 ± 0.052 0.701 ± 0.044 0.722 ± 0.035
MLVAE 0.481 ± 0.022 0.575 ± 0.059 0.652 ± 0.041 0.721 ± 0.035 0.719 ± 0.031

Shu 0.000 ± 0.000 0.294 ± 0.162 0.229 ± 0.194 0.000 ± 0.000 0.069 ± 0.138

Symbolic vector-tokened compositional representations

VCT 0.618 ± 0.046 0.887 ± 0.074 0.907 ± 0.036 0.918 ± 0.037 0.915 ± 0.028
COMET 0.531 ± 0.024 0.531 ± 0.024 0.531 ± 0.024 0.531 ± 0.024 0.531 ± 0.024

Fully continuous compositional representations

Ours 0.639 ± 0.045 0.898 ± 0.038 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

Table 19: Representation learner convergence on the Cars3D dataset (DCI score)

Models DCI score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.047 ± 0.012 0.115 ± 0.021 0.154 ± 0.031 0.261 ± 0.041 0.308 ± 0.073
Ada-GVAE-k 0.054 ± 0.011 0.165 ± 0.012 0.338 ± 0.042 0.558 ± 0.167 0.694 ± 0.140

GVAE 0.071 ± 0.024 0.098 ± 0.021 0.147 ± 0.025 0.216 ± 0.053 0.238 ± 0.061
MLVAE 0.062 ± 0.022 0.100 ± 0.018 0.175 ± 0.050 0.197 ± 0.062 0.238 ± 0.077

Shu 0.007 ± 0.005 0.013 ± 0.011 0.018 ± 0.012 0.038 ± 0.036 0.026 ± 0.015

Symbolic vector-tokened compositional representations

VCT 0.055 ± 0.044 0.240 ± 0.043 0.227 ± 0.024 0.226 ± 0.020 0.230 ± 0.044
COMET 0.020 ± 0.013 0.015 ± 0.011 0.011 ± 0.006 0.008 ± 0.003 0.009 ± 0.003

Fully continuous compositional representations

Ours 0.379 ± 0.117 0.381 ± 0.026 0.812 ± 0.033 0.843 ± 0.024 0.832 ± 0.048

Table 20: Representation learner convergence on the Cars3D dataset (BetaVAE score)

Models BetaVAE score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.937 ± 0.025 0.999 ± 0.002 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
Ada-GVAE-k 0.971 ± 0.011 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

GVAE 0.958 ± 0.027 0.999 ± 0.001 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
MLVAE 0.964 ± 0.011 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

Shu 0.534 ± 0.164 0.742 ± 0.072 0.728 ± 0.105 0.433 ± 0.016 0.449 ± 0.099

Symbolic vector-tokened compositional representations

VCT 0.889 ± 0.044 1.000 ± 0.001 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
COMET 0.592 ± 0.027 0.592 ± 0.028 0.592 ± 0.028 0.592 ± 0.028 0.592 ± 0.028

Fully continuous compositional representations

Ours 0.953 ± 0.042 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000

39

Table 21: Representation learner convergence on the Cars3D dataset (MIG score)

Models MIG score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.008 ± 0.004 0.042 ± 0.017 0.061 ± 0.024 0.071 ± 0.028 0.081 ± 0.031
Ada-GVAE-k 0.011 ± 0.005 0.068 ± 0.013 0.092 ± 0.035 0.241 ± 0.095 0.312 ± 0.085

GVAE 0.014 ± 0.006 0.031 ± 0.015 0.056 ± 0.008 0.084 ± 0.031 0.095 ± 0.032
MLVAE 0.012 ± 0.007 0.037 ± 0.024 0.057 ± 0.018 0.085 ± 0.021 0.087 ± 0.017

Shu 0.007 ± 0.004 0.014 ± 0.005 0.019 ± 0.010 0.002 ± 0.001 0.001 ± 0.001

Symbolic vector-tokened compositional representations

VCT 0.001 ± 0.001 0.034 ± 0.016 0.033 ± 0.021 0.033 ± 0.022 0.032 ± 0.015
COMET 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Fully continuous compositional representations

Ours 0.016 ± 0.010 0.136 ± 0.009 0.344 ± 0.011 0.349 ± 0.010 0.349 ± 0.010

Table 22: Representation learner convergence on the Shapes3D dataset (Factor score)

Models Factor score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.270 ± 0.025 0.392 ± 0.095 0.547 ± 0.138 0.762 ± 0.156 0.923 ± 0.091
Ada-GVAE-k 0.296 ± 0.047 0.577 ± 0.023 0.815 ± 0.057 0.960 ± 0.057 0.961 ± 0.070

GVAE 0.263 ± 0.036 0.469 ± 0.063 0.674 ± 0.086 0.890 ± 0.058 0.879 ± 0.077
MLVAE 0.166 ± 0.084 0.457 ± 0.045 0.621 ± 0.078 0.746 ± 0.080 0.765 ± 0.084

Shu 0.000 ± 0.000 0.000 ± 0.000 0.242 ± 0.072 0.194 ± 0.021 0.227 ± 0.016

Symbolic vector-tokened compositional representations

VCT 0.263 ± 0.000 0.984 ± 0.031 1.000 ± 0.000 0.976 ± 0.033 0.967 ± 0.044
COMET 0.268 ± 0.022 0.265 ± 0.039 0.334 ± 0.028 0.384 ± 0.040 0.440 ± 0.071

Fully continuous compositional representations

Ours 0.356 ± 0.011 0.435 ± 0.048 0.975 ± 0.040 0.995 ± 0.005 0.960 ± 0.053

Table 23: Representation learner convergence on the Shapes3D dataset (DCI score)

Models DCI score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.056 ± 0.015 0.192 ± 0.060 0.353 ± 0.111 0.616 ± 0.147 0.749 ± 0.118
Ada-GVAE-k 0.053 ± 0.018 0.331 ± 0.022 0.662 ± 0.042 0.944 ± 0.063 0.964 ± 0.067

GVAE 0.042 ± 0.013 0.198 ± 0.046 0.438 ± 0.064 0.749 ± 0.053 0.835 ± 0.038
MLVAE 0.026 ± 0.003 0.183 ± 0.036 0.407 ± 0.051 0.668 ± 0.084 0.739 ± 0.103

Shu 0.030 ± 0.007 0.028 ± 0.012 0.032 ± 0.006 0.019 ± 0.010 0.018 ± 0.006

Symbolic vector-tokened compositional representations

VCT 0.044 ± 0.000 0.817 ± 0.114 0.909 ± 0.010 0.887 ± 0.026 0.880 ± 0.022
COMET 0.017 ± 0.006 0.031 ± 0.005 0.062 ± 0.017 0.173 ± 0.064 0.233 ± 0.066

Fully continuous compositional representations

Ours 0.057 ± 0.018 0.183 ± 0.077 0.860 ± 0.052 0.887 ± 0.068 0.924 ± 0.027

40

Table 24: Representation learner convergence on the Shapes3D dataset (BetaVAE score)

Models BetaVAE score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.539 ± 0.061 0.694 ± 0.012 0.949 ± 0.037 0.989 ± 0.020 1.000 ± 0.000 (=)
Ada-GVAE-k 0.553 ± 0.050 0.699 ± 0.016 0.999 ± 0.001 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

GVAE 0.505 ± 0.031 0.683 ± 0.019 0.974 ± 0.025 1.000 ± 0.000 (=) 0.998 ± 0.004
MLVAE 0.484 ± 0.015 0.684 ± 0.013 0.970 ± 0.029 0.949 ± 0.041 0.974 ± 0.036

Shu 0.311 ± 0.204 0.357 ± 0.050 0.495 ± 0.040 0.379 ± 0.056 0.403 ± 0.058

Symbolic vector-tokened compositional representations

VCT 0.889 ± 0.044 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
COMET 0.395 ± 0.000 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

Fully continuous compositional representations

Ours 0.638 ± 0.015 0.710 ± 0.035 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

Table 25: Representation learner convergence on the Shapes3D dataset (MIG score)

Models MIG score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.018 ± 0.009 0.080 ± 0.053 0.163 ± 0.107 0.297 ± 0.156 0.386 ± 0.169
Ada-GVAE-k 0.023 ± 0.012 0.189 ± 0.071 0.288 ± 0.138 0.520 ± 0.149 0.555 ± 0.152

GVAE 0.019 ± 0.012 0.074 ± 0.053 0.153 ± 0.039 0.225 ± 0.052 0.243 ± 0.064
MLVAE 0.010 ± 0.004 0.082 ± 0.042 0.179 ± 0.076 0.305 ± 0.126 0.354 ± 0.148

Shu 0.025 ± 0.007 0.008 ± 0.005 0.013 ± 0.005 0.010 ± 0.003 0.008 ± 0.004

Symbolic vector-tokened compositional representations

VCT 0.000 ± 0.000 0.405 ± 0.103 0.466 ± 0.023 0.469 ± 0.025 0.448 ± 0.065
COMET 0.000 ± 0.000 0.004 ± 0.003 0.013 ± 0.010 0.037 ± 0.022 0.044 ± 0.025

Fully continuous compositional representations

Ours 0.015 ± 0.005 0.043 ± 0.018 0.343 ± 0.104 0.412 ± 0.066 0.402 ± 0.091

Table 26: Representation learner convergence on the MPI3D dataset (Factor score)

Models Factor score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.240 ± 0.008 0.300 ± 0.015 0.325 ± 0.014 0.458 ± 0.095 0.471 ± 0.109
Ada-GVAE-k 0.246 ± 0.012 0.275 ± 0.011 0.321 ± 0.011 0.314 ± 0.050 0.318 ± 0.050

GVAE 0.236 ± 0.020 0.253 ± 0.017 0.277 ± 0.023 0.237 ± 0.020 0.232 ± 0.023
MLVAE 0.235 ± 0.008 0.257 ± 0.014 0.261 ± 0.018 0.229 ± 0.021 0.240 ± 0.019

Shu 0.000 ± 0.000 0.061 ± 0.075 0.173 ± 0.089 0.093 ± 0.077 0.124 ± 0.056

Symbolic vector-tokened compositional representations

VCT 0.220 ± 0.024 0.360 ± 0.017 0.441 ± 0.037 0.678 ± 0.125 0.678 ± 0.045
COMET 0.227 ± 0.019 0.233 ± 0.016 0.233 ± 0.016 0.243 ± 0.005 0.233 ± 0.015

Fully continuous compositional representations

Ours 0.334 ± 0.079 0.350 ± 0.049 0.750 ± 0.065 0.937 ± 0.034 0.951 ± 0.083

41

Table 27: Representation learner convergence on the MPI3D dataset (DCI score)

Models DCI score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.090 ± 0.013 0.125 ± 0.014 0.200 ± 0.014 0.341 ± 0.095 0.381 ± 0.081
Ada-GVAE-k 0.097 ± 0.008 0.117 ± 0.009 0.174 ± 0.005 0.319 ± 0.038 0.338 ± 0.038

GVAE 0.101 ± 0.019 0.111 ± 0.011 0.142 ± 0.022 0.247 ± 0.062 0.258 ± 0.063
MLVAE 0.097 ± 0.015 0.103 ± 0.010 0.137 ± 0.013 0.252 ± 0.031 0.266 ± 0.026

Shu 0.083 ± 0.000 0.065 ± 0.030 0.063 ± 0.018 0.036 ± 0.012 0.050 ± 0.012

Symbolic vector-tokened compositional representations

VCT 0.123 ± 0.021 0.220 ± 0.029 0.535 ± 0.048 0.580 ± 0.046 0.611 ± 0.035
COMET 0.039 ± 0.016 0.036 ± 0.011 0.033 ± 0.008 0.029 ± 0.003 0.032 ± 0.007

Fully continuous compositional representations

Ours 0.172 ± 0.051 0.174 ± 0.037 0.670 ± 0.060 0.813 ± 0.010 0.799 ± 0.078

Table 28: Representation learner convergence on the MPI3D dataset (BetaVAE score)

Models BetaVAE score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.359 ± 0.004 0.484 ± 0.019 0.629 ± 0.038 0.833 ± 0.035 0.851 ± 0.045
Ada-GVAE-k 0.362 ± 0.006 0.397 ± 0.028 0.587 ± 0.040 0.741 ± 0.047 0.748 ± 0.041

GVAE 0.352 ± 0.012 0.378 ± 0.015 0.506 ± 0.041 0.683 ± 0.071 0.703 ± 0.062
MLVAE 0.343 ± 0.021 0.394 ± 0.022 0.507 ± 0.015 0.672 ± 0.038 0.697 ± 0.035

Shu 0.170 ± 0.057 0.294 ± 0.026 0.325 ± 0.038 0.269 ± 0.023 0.278 ± 0.021

Symbolic vector-tokened compositional representations

VCT 0.889 ± 0.044 1.000 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
COMET 0.277 ± 0.011 0.277 ± 0.011 0.277 ± 0.011 0.270 ± 0.007 0.278 ± 0.010

Fully continuous compositional representations

Ours 0.302 ± 0.011 0.577 ± 0.021 0.973 ± 0.048 0.980 ± 0.022 0.976 ± 0.024

Table 29: Representation learner convergence on the MPI3D dataset (MIG score)

Models MIG score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.014 ± 0.004 0.059 ± 0.042 0.084 ± 0.061 0.206 ± 0.120 0.214 ± 0.125
Ada-GVAE-k 0.016 ± 0.005 0.039 ± 0.011 0.113 ± 0.051 0.213 ± 0.062 0.214 ± 0.057

GVAE 0.014 ± 0.004 0.022 ± 0.003 0.058 ± 0.035 0.140 ± 0.061 0.147 ± 0.066
MLVAE 0.010 ± 0.004 0.032 ± 0.022 0.044 ± 0.015 0.136 ± 0.051 0.144 ± 0.054

Shu 0.005 ± 0.000 0.010 ± 0.006 0.024 ± 0.019 0.009 ± 0.005 0.013 ± 0.005

Symbolic vector-tokened compositional representations

VCT 0.000 ± 0.000 0.013 ± 0.003 0.216 ± 0.055 0.240 ± 0.050 0.248 ± 0.057
COMET 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Fully continuous compositional representations

Ours 0.037 ± 0.020 0.046 ± 0.018 0.393 ± 0.063 0.612 ± 0.068 0.514 ± 0.202

C.4.2 Downstream Performance

We additionally evaluate the representation learning convergence by examining the usefulness of
representations produced at different stages of training (i.e., 100, 250, 500, 1,000, 10,000, 100,000

42

and 200,000 iterations of training). To quantify ‘usefulness’, we consider performance of downstream
models on the tasks of FoV regression, and abstract visual reasoning when trained using represen-
tations produced by each stage of training. For each task, we present line plots, and additionally
tables with values corresponding to each of the plots. We use the same legend as in the previous
section, where 0 (grey) denotes SlowVAE, 1 (orange) denotes AdaGVAE-k, 2 (green) denotes GVAE,
3 (red) denotes MLVAE, 4 (purple) denotes Shu, 5 (pink) denotes VCT, 6 (brown) denotes COMET,
and 7 (blue) denotes our model, Soft TPR Autoencoder. We additionally provide all results for
the dimensionality-control setting, where the dimensionality of representations produced by all
representation learners is held constant following the approach detailed in C.2.4 , denoting this clearly
in plot captions, and by the symbol † in the tables.

FoV Regression

As clearly visible in the tables and plots, generic regression models are able to more effectively use
representations produced by our Soft TPR Autoencoder produced across almost all stages of training
for all disentanglement datasets. Improvements are most notable in the low-iteration regime of 102
iterations, and across most stages of training for the more challenging task of FoV regression on the
MPI3D dataset (Figures 19 and 20).

43

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Cars3D 0
1
2
3
4
5
6
7

Figure 15: Convergence of representation learners as measured by FoV regression on the Cars3D dataset (original
setting)

102 103 104 105

Iteration count

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

RS
q

Cars3D 0
1
2
3
4
5
6
7

Figure 16: Convergence of representation learners as measured by FoV regression on the Cars3D dataset
(dimensionality-controlled setting)

44

102 103 104 105

Iteration count

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

Shapes3D 0
1
2
3
4
5
6
7

Figure 17: Convergence of representation learners as measured by FoV regression on the Shapes3D dataset
(original setting)

102 103 104 105

Iteration count

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

Shapes3D 0
1
2
3
4
5
6
7

Figure 18: Convergence of representation learners as measured by FoV regression on the Shapes3D dataset
(dimensionality-controlled setting)

45

102 103 104 105

Iteration count

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

MPI3D 0
1
2
3
4
5
6
7

Figure 19: Convergence of representation learners as measured by FoV regression on the MPI3D dataset (original
setting)

102 103 104 105

Iteration count

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

MPI3D 0
1
2
3
4
5
6
7

Figure 20: Convergence of representation learners as measured by FoV regression on the MPI3D dataset
(dimensionality-controlled setting)

46

Table 30: Convergence of representation learners as measured by FoV regression on the Cars3D dataset

Models R2 score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.233 ± 0.048 0.816 ± 0.017 0.892 ± 0.007 0.925 ± 0.005 0.935 ± 0.004
Slow-VAE† 0.203 ± 0.074 0.797 ± 0.009 0.891 ± 0.006 0.917 ± 0.006 0.937 ± 0.001

Ada-GVAE-k 0.307 ± 0.084 0.821 ± 0.016 0.896 ± 0.009 0.944 ± 0.007 0.957 ± 0.005
Ada-GVAE-k† 0.264 ± 0.088 0.805 ± 0.015 0.888 ± 0.009 0.940 ± 0.007 0.951 ± 0.008

GVAE 0.319 ± 0.073 0.831 ± 0.012 0.901 ± 0.009 0.942 ± 0.004 0.947 ± 0.005
GVAE† 0.282 ± 0.056 0.821 ± 0.008 0.895 ± 0.009 0.936 ± 0.007 0.943 ± 0.004
MLVAE 0.317 ± 0.058 0.820 ± 0.007 0.904 ± 0.007 0.945 ± 0.004 0.948 ± 0.007
MLVAE† 0.26 ± 0.061 0.808 ± 0.005 0.900 ± 0.009 0.939 ± 0.004 0.948 ± 0.007

Shu -0.016 ± 0.016 0.003 ± 0.019 0.343 ± 0.037 0.076 ± 0.058 0.075 ± 0.051
Shu† 0.012 ± 0.007 -0.009 ± 0.02 0.343 ± 0.042 0.074 ± 0.070 0.094 ± 0.055

Symbolic vector-tokened compositional representations

VCT 0.080 ± 0.001 0.829 ± 0.015 0.877 ± 0.007 0.832 ± 0.010 0.813 ± 0.014
VCT† 0.038 ± 0.014 0.243 ± 0.03 0.655 ± 0.011 0.631 ± 0.029 0.623 ± 0.036

COMET -0.029 ± 0.011 -0.035 ± 0.023 -0.035 ± 0.023 -0.035 ± 0.023 -0.035 ± 0.023
COMET† -0.484 ± 0.477 -0.495 ± 0.512 -0.495 ± 0.512 -0.515 ± 0.47 -0.715 ± 0.295

Fully continuous compositional representations

Ours 0.531 ± 0.054 0.855 ± 0.012 0.920 ± 0.009 0.914 ± 0.008 0.910 ± 0.010

Table 31: Convergence of representation learners as measured by FoV regression on the Shapes3D dataset

Models R2 score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.597 ± 0.048 0.927 ± 0.007 0.960 ± 0.032 0.999 ± 0.000 (=) 1.000 ± 0.000 (=)
Slow-VAE† 0.564 ± 0.060 0.920 ± 0.011 0.955 ± 0.037 0.999 ± 0.000 (=) 0.999 ± 0.000

Ada-GVAE-k 0.684 ± 0.068 0.974 ± 0.007 0.997 ± 0.000 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
Ada-GVAE-k† 0.698 ± 0.063 0.973 ± 0.007 0.997 ± 0.000 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

GVAE 0.565 ± 0.034 0.951 ± 0.015 0.997 ± 0.000 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
GVAE† 0.565 ± 0.022 0.951 ± 0.014 0.998 ± 0.001 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
MLVAE 0.551 ± 0.059 0.959 ± 0.012 0.997 ± 0.000 0.999 ± 0.000 (=) 1.000 ± 0.000 (=)
MLVAE† 0.556 ± 0.055 0.960 ± 0.010 0.996 ± 0.000 0.999 ± 0.000 (=) 1.000 ± 0.000 (=)

Shu 0.327 ± 0.13 0.497 ± 0.106 0.631 ± 0.087 0.471 ± 0.027 0.427 ± 0.082
Shu† 0.461 ± 0.075 0.525 ± 0.107 0.632 ± 0.088 0.471 ± 0.008 0.419 ± 0.082

Symbolic vector-tokened compositional representations

VCT 0.886 ± 0.033 0.997 ± 0.000 0.995 ± 0.001 0.97 ± 0.013 0.954 ± 0.008
VCT† 0.255 ± 0.049 0.819 ± 0.077 0.896 ± 0.021 0.888 ± 0.028 0.843 ± 0.04

COMET 0.395 ± 0.063 0.772 ± 0.016 0.968 ± 0.011 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)
COMET† 0.474 ± 0.062 0.809 ± 0.013 0.970 ± 0.011 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

Fully continuous compositional representations

Ours 0.981 ± 0.003 0.989 ± 0.007 1.000 ± 0.000 (=) 1.000 ± 0.000 (=) 1.000 ± 0.000 (=)

47

Table 32: Convergence of representation learners as measured by FoV regression on the MPI3D dataset

Models R2 score

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.557 ± 0.012 0.634 ± 0.015 0.818 ± 0.016 0.960 ± 0.013 0.980 ± 0.005
Slow-VAE† 0.512 ± 0.009 0.612 ± 0.023 0.809 ± 0.025 0.964 ± 0.008 0.981 ± 0.004

Ada-GVAE-k 0.519 ± 0.023 0.611 ± 0.028 0.694 ± 0.007 0.750 ± 0.008 0.762 ± 0.014
Ada-GVAE-k† 0.524 ± 0.015 0.595 ± 0.015 0.704 ± 0.025 0.753 ± 0.012 0.774 ± 0.003

GVAE 0.511 ± 0.037 0.602 ± 0.021 0.724 ± 0.012 0.748 ± 0.013 0.771 ± 0.018
GVAE† 0.508 ± 0.028 0.614 ± 0.020 0.717 ± 0.013 0.773 ± 0.024 0.764 ± 0.019
MLVAE 0.504 ± 0.016 0.605 ± 0.013 0.717 ± 0.020 0.780 ± 0.016 0.773 ± 0.031
MLVAE† 0.497 ± 0.019 0.602 ± 0.008 0.714 ± 0.012 0.766 ± 0.010 0.790 ± 0.027

Shu 0.270 ± 0.041 0.498 ± 0.095 0.592 ± 0.082 0.470 ± 0.036 0.441 ± 0.041
Shu† 0.299 ± 0.040 0.519 ± 0.062 0.568 ± 0.079 0.474 ± 0.036 0.438 ± 0.037

Symbolic vector-tokened compositional representations

VCT 0.316 ± 0.016 0.316 ± 0.011 0.516 ± 0.02 0.543 ± 0.000 0.456 ± 0.061
VCT† 0.251 ± 0.04 0.396 ± 0.041 0.546 ± 0.027 0.508 ± 0.016 0.561 ± 0.051

COMET 0.266 ± 0.004 0.266 ± 0.004 0.266 ± 0.004 0.266 ± 0.004 0.266 ± 0.004
COMET† 0.240 ± 0.010 0.236 ± 0.008 0.236 ± 0.008 0.236 ± 0.008 0.236 ± 0.008

Fully continuous compositional representations

Ours 0.732 ± 0.073 0.741 ± 0.058 0.914 ± 0.012 0.891 ± 0.011 0.882 ± 0.016

Abstract Visual Reasoning

We present now present our full suite of results for the downstream task of abstract visual reasoning.
As demonstrated in Table 33 and the corresponding Figures 21 and 22 , representations produced
by our model at only 102 iterations of training are able to be leveraged by downstream models to
achieve a 80.04% accuracy for the challenging abstract visual reasoning task, in contrast to the value
of 63.1% obtained by the best performing baseline, representing a 26.78% performance increase.

48

Figure 21: Convergence of representation learners as measured by classification performance on the abstract
visual reasoning dataset (original setting)

Figure 22: Convergence of representation learners as measured by classification performance on the abstract
visual reasoning dataset (dimensionality-controlled setting)

49

Table 33: Convergence of representation learners as measured by classification performance on the abstract
visual reasoning dataset

Models Classification accuracy

102 iterations 103 iterations 104 iterations 105 iterations 2× 105 iterations

Symbolic scalar-tokened compositional representations

Slow-VAE 0.332 ± 0.022 0.450 ± 0.023 0.460 ± 0.031 0.429 ± 0.038 0.396 ± 0.022
Slow-VAE† 0.552 ± 0.035 0.791 ± 0.011 0.904 ± 0.020 0.949 ± 0.012 0.959 ± 0.009

Ada-GVAE-k 0.397 ± 0.021 0.375 ± 0.038 0.409 ± 0.029 0.455 ± 0.047 0.472 ± 0.037
Ada-GVAE-k† 0.631 ± 0.037 0.845 ± 0.010 0.892 ± 0.015 0.943 ± 0.017 0.954 ± 0.009

GVAE 0.346 ± 0.029 0.424 ± 0.034 0.431 ± 0.020 0.444 ± 0.057 0.478 ± 0.032
GVAE† 0.554 ± 0.031 0.815 ± 0.008 0.894 ± 0.011 0.894 ± 0.055 0.936 ± 0.008
MLVAE 0.336 ± 0.016 0.404 ± 0.013 0.431 ± 0.038 0.466 ± 0.052 0.432 ± 0.023
MLVAE† 0.550 ± 0.025 0.824 ± 0.021 0.878 ± 0.014 0.919 ± 0.034 0.925 ± 0.024

Shu 0.208 ± 0.052 0.273 ± 0.012 0.331 ± 0.007 0.317 ± 0.025 0.310 ± 0.038
Shu† 0.207 ± 0.048 0.399 ± 0.072 0.462 ± 0.024 0.433 ± 0.023 0.444 ± 0.013

Symbolic vector-tokened compositional representations

VCT 0.440 ± 0.033 0.932 ± 0.062 0.769 ± 0.087 0.695 ± 0.049 0.641 ± 0.039
VCT† 0.432 ± 0.043 0.723 ± 0.065 0.731 ± 0.017 0.479 ± 0.023 0.458 ± 0.040

COMET 0.369 ± 0.077 0.683 ± 0.037 0.848 ± 0.049 0.501 ± 0.251 0.984 ± 0.006
COMET† 0.348 ± 0.069 0.545 ± 0.197 0.829 ± 0.051 0.856 ± 0.256 0.532 ± 0.348

Fully continuous compositional representations

Ours 0.804 ± 0.016 0.864 ± 0.011 0.952 ± 0.008 0.884 ± 0.012 0.869 ± 0.024

C.5 Downstream Performance

We present our full suite of experimental results that empirically demonstrate the utility of our Soft
TPR representation from the perspective of downstream models, by considering the sample efficiency,
and low-sample regime performance of downstream models on the tasks of FoV regression, and
abstract visual reasoning.

C.5.1 Sample Efficiency Results

For sample efficiency, as mentioned in Section 5.2, and in line with [25], we compute a ratio-based
metric obtained by dividing the performance of the downstream model when trained using a restricted
number of 100, 250, 500, 1,000 and 10,000 samples, by its performance when trained using all
samples (19,104, 480,000, 1,036,800 and 100,000 samples for the tasks of regression on the Cars3D,
Shapes3D, MPI3D datasets, and the abstract visual reasoning task respectively). As this metric is
dependent on the performance of downstream models when trained using all samples, we do not
compute this metric for representation learners where the corresponding downstream models achieve
an R2 score of less than 0.5 for regression, as this may produce sample efficiency scores with very
little semantic meaning (e.g. a model that achieves a sample efficiency score of 0.9 when its final
R2 score is 0.1). As a result, we remove Shu from Shapes3D sample efficiency calculations, and
COMET and Shu from the Cars3D sample efficiency calculations.

As many models for the abstract visual reasoning task have low classification accuracies on the
held-out test set following training with the maximal number of 100,000 samples, we do not compute
sample efficiencies for this task, and instead refer readers to results in Section C.5.2 for the raw
classification accuracies associated with each model.

Note that for all box plots, we follow standard convention, and display the median in each box with a
solid line, where the box shows the quartiles of the corresponding values, and the whiskers extend
to 1.5 times the interquartile range. We again, use the same legend, where grey denotes SlowVAE,
orange denotes AdaGVAE-k, green denotes GVAE, red denotes MLVAE, purple denotes Shu, pink
denotes VCT, brown denotes COMET, and blue denotes our model, Soft TPR Autoencoder.

50

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (100/all)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (250/all)
0
1
2
3
4
5

Figure 23: Downstream regression model sample efficiency on the Cars3D dataset (original setting).

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (500/all)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (10,000/all)
0
1
2
3
4
5

Figure 24: Downstream regression model sample efficiency on the Cars3D dataset (original setting).

51

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (100/all)

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (250/all)
0
1
2
3
4
5
6
7

Figure 25: Downstream regression model sample efficiency on the Cars3D dataset (dimensionality-controlled
setting).

0 1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

1.0

Rs
q

ra
tio

Sample efficiency (500/all)

0 1 2 3 4 5 6 7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (10,000/all)
0
1
2
3
4
5
6
7

Figure 26: Downstream regression model sample efficiency on the Cars3D dataset (dimensionality-controlled
setting).

52

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rs
q

ra
tio

Sample efficiency (100/all)

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (250/all)
0
1
2
3
4
5
6

Figure 27: Downstream regression model sample efficiency on the Shapes3D dataset (original setting).

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (500/all)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Rs
q

ra
tio

Sample efficiency (10,000/all)
0
1
2
3
4
5
6

Figure 28: Downstream regression model sample efficiency on the Shapes3D dataset (original setting).

53

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rs
q

ra
tio

Sample efficiency (100/all)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (250/all)
0
1
2
3
4
5
6
7

Figure 29: Downstream regression model sample efficiency on the Shapes3D dataset (dimensionality-controlled
setting).

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (500/all)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1 2 3 4 5 6 7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Rs
q

ra
tio

Sample efficiency (10,000/all)
0
1
2
3
4
5
6
7

Figure 30: Downstream regression model sample efficiency on the Shapes3D dataset (dimensionality-controlled
setting).

54

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rs
q

ra
tio

Sample efficiency (100/all)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rs
q

ra
tio

Sample efficiency (250/all)
0
1
2
3
4
5
6
7

Figure 31: Downstream regression model sample efficiency on the MPI3D dataset (original setting).

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (500/all)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Rs
q

ra
tio

Sample efficiency (10,000/all)
0
1
2
3
4
5
6
7

Figure 32: Downstream regression model sample efficiency on the MPI3D dataset (original setting).

55

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rs
q

ra
tio

Sample efficiency (100/all)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rs
q

ra
tio

Sample efficiency (250/all)
0
1
2
3
4
5
6
7

Figure 33: Downstream regression model sample efficiency on the MPI3D dataset (dimensionality-controlled
setting).

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (500/all)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

Rs
q

ra
tio

Sample efficiency (10,000/all)
0
1
2
3
4
5
6
7

Figure 34: Downstream regression model sample efficiency on the MPI3D dataset (dimensionality-controlled
setting).

56

Table 34: Downstream regression model sample efficiency on the Cars3D dataset

Models R2 ratio

102/all samples 2.5× 102/all samples 5× 103/all samples 104/all samples 105/all samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.273 ± 0.052 0.537 ± 0.012 0.833 ± 0.025 0.882 ± 0.018 0.994 ± 0.004
Slow-VAE† 0.166 ± 0.055 0.292 ± 0.014 0.866 ± 0.005 0.895 ± 0.010 0.993 ± 0.002

Ada-GVAE-k 0.610 ± 0.131 0.834 ± 0.040 0.881 ± 0.026 0.922 ± 0.019 0.989 ± 0.005
Ada-GVAE-k† 0.452 ± 0.156 0.821 ± 0.028 0.879 ± 0.029 0.920 ± 0.021 0.992 ± 0.007

GVAE 0.412 ± 0.092 0.791 ± 0.013 0.855 ± 0.012 0.900 ± 0.008 0.986 ± 0.006
GVAE† 0.314 ± 0.066 0.799 ± 0.010 0.849 ± 0.014 0.895 ± 0.014 0.987 ± 0.004
MLVAE 0.477 ± 0.069 0.698 ± 0.027 0.844 ± 0.015 0.893 ± 0.016 0.984 ± 0.010
MLVAE† 0.305 ± 0.071 0.648 ± 0.072 0.854 ± 0.013 0.896 ± 0.012 0.989 ± 0.008

Symbolic vector-tokened compositional representations

VCT 0.558 ± 0.028 0.694 ± 0.034 0.808 ± 0.013 0.837 ± 0.023 0.973 ± 0.024
VCT† 0.197 ± 0.151 0.640 ± 0.113 0.640 ± 0.113 0.725 ± 0.038 1.000 ± 0.000 (=)

Fully continuous compositional representations

Ours 0.705 ± 0.023 0.889 ± 0.042 0.926 ± 0.009 0.942 ± 0.018 1.000 ± 0.000 (=)

Table 35: Downstream regression model sample efficiency on the Shapes3D dataset

Models R2 ratio

102/all samples 2.5× 102/all samples 5× 103/all samples 104/all samples 105/all samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.021 ± 0.016 0.085 ± 0.035 0.183 ± 0.051 0.563 ± 0.070 0.994 ± 0.002
Slow-VAE† 0.003 ± 0.008 0.021 ± 0.025 0.066 ± 0.036 0.419 ± 0.107 0.995 ± 0.002

Ada-GVAE-k 0.480 ± 0.155 0.510 ± 0.160 0.717 ± 0.206 0.855 ± 0.103 0.997 ± 0.001
Ada-GVAE-k† 0.133 ± 0.088 0.199 ± 0.058 0.643 ± 0.231 0.809 ± 0.164 0.998 ± 0.000 (=)

GVAE 0.417 ± 0.056 0.594 ± 0.079 0.688 ± 0.052 0.893 ± 0.024 0.997 ± 0.000
GVAE† 0.13 ± 0.047 0.234 ± 0.038 0.479 ± 0.076 0.871 ± 0.029 0.998 ± 0.000 (=)
MLVAE 0.371 ± 0.041 0.515 ± 0.093 0.590 ± 0.080 0.855 ± 0.059 0.997 ± 0.000
MLVAE† 0.123 ± 0.048 0.235 ± 0.069 0.413 ± 0.035 0.808 ± 0.141 0.999 ± 0.000

Symbolic vector-tokened compositional representations

VCT 0.020 ± 0.025 0.216 ± 0.139 0.377 ± 0.100 0.591 ± 0.079 0.884 ± 0.008
VCT† 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.009 ± 0.018 0.470 ± 0.071

COMET 0.352 ± 0.036 0.699 ± 0.038 0.772 ± 0.028 0.812 ± 0.025 0.997 ± 0.001
COMET† 0.752 ± 0.039 0.810 ± 0.034 0.870 ± 0.029 0.916 ± 0.031 0.996 ± 0.001

Fully continuous compositional representations

Ours 0.464 ± 0.071 0.730 ± 0.038 0.804 ± 0.075 0.889 ± 0.035 0.996 ± 0.001

57

Table 36: Downstream regression model sample efficiency on the MPI3D dataset

Models R2 ratio

102/all samples 2.5× 102/all samples 5× 103/all samples 104/all samples 105/all samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.130 ± 0.051 0.155 ± 0.011 0.608 ± 0.082 0.692 ± 0.081 0.881 ± 0.022
Slow-VAE† 0.107 ± 0.027 0.095 ± 0.011 0.541 ± 0.079 0.668 ± 0.117 0.877 ± 0.017

Ada-GVAE-k 0.270 ± 0.037 0.279 ± 0.026 0.500 ± 0.016 0.541 ± 0.020 0.703 ± 0.017
Ada-GVAE-k† 0.053 ± 0.053 0.120 ± 0.023 0.442 ± 0.018 0.504 ± 0.015 0.680 ± 0.012

GVAE 0.234 ± 0.035 0.282 ± 0.027 0.481 ± 0.032 0.524 ± 0.035 0.686 ± 0.033
GVAE† 0.077 ± 0.073 0.157 ± 0.037 0.415 ± 0.043 0.443 ± 0.034 0.648 ± 0.025
MLVAE 0.236 ± 0.019 0.288 ± 0.030 0.462 ± 0.051 0.497 ± 0.017 0.663 ± 0.012
MLVAE† 0.065 ± 0.042 0.114 ± 0.049 0.387 ± 0.024 0.469 ± 0.034 0.659 ± 0.030

Shu 0.343 ± 0.024 0.482 ± 0.075 0.549 ± 0.091 0.601 ± 0.047 0.750 ± 0.058
Shu† 0.143 ± 0.103 0.427 ± 0.035 0.493 ± 0.073 0.547 ± 0.070 0.714 ± 0.067

Symbolic vector-tokened compositional representations

VCT 0.189 ± 0.107 0.246 ± 0.137 0.294 ± 0.145 0.312 ± 0.14 0.418 ± 0.180
VCT† 0.039 ± 0.088 0.168 ± 0.082 0.230 ± 0.110 0.279 ± 0.127 0.502 ± 0.052

COMET 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.823 ± 0.139
COMET† 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.187 ± 0.374

Fully continuous compositional representations

Ours 0.556 ± 0.078 0.665 ± 0.067 0.721 ± 0.089 0.787 ± 0.078 0.858 ± 0.040

C.5.2 Low Sample Regime Results

To evaluate the utility of our Soft TPR representation from the perspective of downstream models,
we additionally evaluate the raw performance of downstream models as a function of the number of
samples they have been trained on (again considering 100, 250, 500, 1,000, 10,000 and all samples).
We find that our Soft TPR representation contributes to a substantial performance boost in the
downstream model’s performance in a low-sample regime where the downstream model has been
trained with 100, 250, 500, and 1,000 samples. We present our full suite of experimental results,
and highlight the particular performance differentials conferred by our representational form in the
low-sample regime.

FoV Regression

58

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
RS

q

Downstream performance (100)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (250)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 35: Downstream regression model R2 scores on the Cars3D dataset (original setting).

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (1,000)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (10,000)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (all)
0
1
2
3
4
5
6
7

Figure 36: Downstream regression model R2 scores on the Cars3D dataset (original setting).

59

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RS
q

Downstream performance (100)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (250)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 37: Downstream regression model R2 scores on the Cars3D dataset (dimensionality-controlled setting).

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (1,000)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (10,000)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (all)
0
1
2
3
4
5
6
7

Figure 38: Downstream regression model R2 scores on the Cars3D dataset (dimensionality-controlled setting).

60

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RS
q

Downstream performance (100)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (250)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 39: Downstream regression model R2 scores on the Shapes3D dataset (original setting).

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (1,000)

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (10,000)

0 1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

Downstream performance (all)
0
1
2
3
4
5
6
7

Figure 40: Downstream regression model R2 scores on the Shapes3D dataset (original setting).

61

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RS
q

Downstream performance (100)

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (250)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 41: Downstream regression modelR2 scores on the Shapes3D dataset (dimensionality-controlled setting).

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (1,000)

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

RS
q

Downstream performance (10,000)

0 1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

Downstream performance (all)
0
1
2
3
4
5
6
7

Figure 42: Downstream regression modelR2 scores on the Shapes3D dataset (dimensionality-controlled setting).

62

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RS
q

Downstream performance (100)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RS
q

Downstream performance (250)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RS
q

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 43: Downstream regression model R2 scores on the MPI3D dataset (original setting).

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RS
q

Downstream performance (1,000)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (10,000)

0 1 2 3 4 5 6 7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

Downstream performance (all)
0
1
2
3
4
5
6
7

Figure 44: Downstream regression model R2 scores on the MPI3D dataset (original setting).

63

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RS
q

Downstream performance (100)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RS
q

Downstream performance (250)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RS
q

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 45: Downstream regression model R2 scores on the MPI3D dataset (dimensionality-controlled setting).

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RS
q

Downstream performance (1,000)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

RS
q

Downstream performance (10,000)

0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RS
q

Downstream performance (all)
0
1
2
3
4
5
6
7

Figure 46: Downstream regression model R2 scores on the MPI3D dataset (dimensionality-controlled setting).

64

Table 37: Downstream regression model performance on the Cars3D dataset

Models R2 score

102 samples 2.5× 102 samples 5× 103 samples 104 samples 105 samples all samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.255 ± 0.05 0.502 ± 0.009 0.779 ± 0.023 0.825 ± 0.016 0.929 ± 0.003 0.935 ± 0.004
Slow-VAE† 0.155 ± 0.052 0.274 ± 0.013 0.811 ± 0.005 0.838 ± 0.010 0.930 ± 0.002 0.935 ± 0.004

Ada-GVAE-k 0.584 ± 0.125 0.798 ± 0.040 0.843 ± 0.028 0.883 ± 0.020 0.947 ± 0.009 0.957 ± 0.005 (=)
Ada-GVAE-k† 0.430 ± 0.149 0.784 ± 0.033 0.836 ± 0.028 0.875 ± 0.018 0.944 ± 0.010 0.957 ± 0.005 (=)

GVAE 0.390 ± 0.087 0.750 ± 0.011 0.810 ± 0.009 0.852 ± 0.006 0.934 ± 0.006 0.947 ± 0.005 (=)
GVAE† 0.296 ± 0.061 0.754 ± 0.009 0.801 ± 0.016 0.845 ± 0.015 0.931 ± 0.007 0.947 ± 0.005 (=)
MLVAE 0.452 ± 0.063 0.662 ± 0.029 0.800 ± 0.018 0.847 ± 0.010 0.933 ± 0.007 0.948 ± 0.007
MLVAE† 0.289 ± 0.066 0.614 ± 0.067 0.809 ± 0.011 0.849 ± 0.014 0.938 ± 0.006 0.948 ± 0.007

Shu 0.044 ± 0.045 0.055 ± 0.044 0.061 ± 0.047 0.067 ± 0.050 0.085 ± 0.056 0.075 ± 0.051
Shu† 0.010 ± 0.042 0.065 ± 0.022 0.079 ± 0.031 0.079 ± 0.030 0.101 ± 0.046 0.075 ± 0.051

Symbolic vector-tokened compositional representations

VCT 0.454 ± 0.021 0.565 ± 0.033 0.657 ± 0.009 0.681 ± 0.019 0.792 ± 0.018 0.813 ± 0.014
VCT† 0.117 ± 0.087 0.340 ± 0.073 0.390 ± 0.059 0.444 ± 0.019 0.643 ± 0.034 0.813 ± 0.014

COMET -0.058 ± 0.027 -0.098 ± 0.054 -0.074 ± 0.036 -0.147 ± 0.101 -0.036 ± 0.028 -0.035 ± 0.023
COMET† -0.379 ± 0.303 -0.258 ± 0.085 -0.966 ± 0.470 -0.306 ± 0.103 -0.739 ± 0.751 -0.035 ± 0.023

Fully continuous compositional representations

Ours 0.642 ± 0.023 0.809 ± 0.037 0.843 ± 0.010 0.858 ± 0.019 0.917 ± 0.013 0.910 ± 0.010

Table 38: Downstream regression model performance on the Shapes3D dataset

Models R2 score

102 samples 2.5× 102 samples 5× 103 samples 104 samples 105 samples all samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.019 ± 0.017 0.085 ± 0.035 0.183 ± 0.051 0.562 ± 0.070 0.993 ± 0.002 1.000 ± 0.000 (=)
Slow-VAE† -0.030 ± 0.034 0.018 ± 0.028 0.066 ± 0.036 0.418 ± 0.107 0.994 ± 0.003 0.999 ± 0.000

Ada-GVAE-k 0.480 ± 0.155 0.510 ± 0.160 0.666 ± 0.170 0.854 ± 0.103 0.997 ± 0.001 (=) 1.000 ± 0.000 (=)
Ada-GVAE-k† 0.133 ± 0.088 0.199 ± 0.058 0.563 ± 0.209 0.809 ± 0.164 0.997 ± 0.001 (=) 1.000 ± 0.000 (=)

GVAE 0.417 ± 0.056 0.593 ± 0.079 0.687 ± 0.052 0.893 ± 0.024 0.997 ± 0.000 (=) 1.000 ± 0.000 (=)
GVAE† 0.130 ± 0.047 0.234 ± 0.038 0.478 ± 0.076 0.870 ± 0.029 0.998 ± 0.000 1.000 ± 0.000 (=)
MLVAE 0.370 ± 0.041 0.515 ± 0.093 0.590 ± 0.080 0.854 ± 0.059 0.996 ± 0.000 1.000 ± 0.000 (=)
MLVAE† 0.123 ± 0.048 0.234 ± 0.069 0.412 ± 0.035 0.807 ± 0.141 0.997 ± 0.000 (=) 1.000 ± 0.000 (=)

Shu 0.062 ± 0.086 0.117 ± 0.075 0.146 ± 0.073 0.157 ± 0.078 0.245 ± 0.096 0.427 ± 0.082
Shu† -0.029 ± 0.076 0.093 ± 0.08 0.118 ± 0.077 0.131 ± 0.079 0.228 ± 0.085 0.419 ± 0.082

Symbolic vector-tokened compositional representations

VCT -0.201 ± 0.289 0.202 ± 0.136 0.359 ± 0.093 0.564 ± 0.075 0.844 ± 0.012 0.954 ± 0.008
VCT† -4.183 ± 1.679 -1.464 ± 0.492 -0.552 ± 0.307 -0.205 ± 0.134 0.396 ± 0.063 0.843 ± 0.040

COMET 0.352 ± 0.036 0.699 ± 0.038 0.772 ± 0.029 0.812 ± 0.025 0.996 ± 0.001 1.000 ± 0.000 (=)
COMET† 0.751 ± 0.039 0.870 ± 0.029 0.996 ± 0.001 0.915 ± 0.031 0.996 ± 0.001 1.000 ± 0.000 (=)

Fully continuous compositional representations

Ours 0.464 ± 0.071 0.730 ± 0.038 0.804 ± 0.075 0.889 ± 0.035 0.995 ± 0.002 1.000 ± 0.000 (=)

65

Table 39: Downstream regression model performance on the MPI3D dataset

Models R2 score

102 samples 2.5× 102 samples 5× 103 samples 104 samples 105 samples all samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.127 ± 0.059 0.152 ± 0.011 0.596 ± 0.083 0.678 ± 0.082 0.863 ± 0.023 0.980 ± 0.005
Slow-VAE† 0.105 ± 0.026 0.093 ± 0.011 0.531 ± 0.077 0.655 ± 0.113 0.860 ± 0.016 0.981 ± 0.004

Ada-GVAE-k 0.206 ± 0.031 0.213 ± 0.023 0.381 ± 0.014 0.412 ± 0.015 0.536 ± 0.013 0.762 ± 0.014
Ada-GVAE-k† 0.037 ± 0.045 0.093 ± 0.018 0.342 ± 0.014 0.390 ± 0.012 0.527 ± 0.010 0.774 ± 0.003

GVAE 0.181 ± 0.030 0.217 ± 0.023 0.371 ± 0.026 0.404 ± 0.028 0.530 ± 0.035 0.771 ± 0.018
GVAE† 0.056 ± 0.057 0.120 ± 0.029 0.316 ± 0.027 0.338 ± 0.019 0.495 ± 0.020 0.764 ± 0.019
MLVAE 0.182 ± 0.013 0.222 ± 0.024 0.357 ± 0.042 0.384 ± 0.023 0.513 ± 0.025 0.773 ± 0.031
MLVAE† 0.051 ± 0.032 0.089 ± 0.037 0.305 ± 0.018 0.370 ± 0.023 0.520 ± 0.033 0.790 ± 0.027

Shu 0.151 ± 0.016 0.211 ± 0.026 0.238 ± 0.019 0.264 ± 0.018 0.330 ± 0.033 0.441 ± 0.041
Shu† 0.057 ± 0.048 0.186 ± 0.012 0.214 ± 0.017 0.237 ± 0.013 0.311 ± 0.020 0.438 ± 0.037

Symbolic vector-tokened compositional representations

VCT 0.047 ± 0.139 0.110 ± 0.087 0.124 ± 0.104 0.105 ± 0.175 0.164 ± 0.183 0.455 ± 0.071
VCT† -0.005 ± 0.058 0.084 ± 0.062 0.106 ± 0.092 0.153 ± 0.072 0.276 ± 0.036 0.550 ± 0.046

COMET -0.051 ± 0.015 -0.042 ± 0.018 -0.037 ± 0.012 -0.053 ± 0.024 0.218 ± 0.036 0.266 ± 0.004
COMET† -0.118 ± 0.045 -0.089 ± 0.050 -0.074 ± 0.039 -0.179 ± 0.098 0.027 ± 0.099 0.236 ± 0.008

Fully continuous compositional representations

Ours 0.490 ± 0.068 0.594 ± 0.056 0.635 ± 0.070 0.693 ± 0.060 0.757 ± 0.03 0.882 ± 0.016

b) Abstract Visual Reasoning

66

0 1 2 3 4 5 6 7

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Downstream performance (100)

0 1 2 3 4 5 6 7

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Downstream performance (250)

0 1 2 3 4 5 6 7

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 47: Downstream WReN model classification accuracy on the abstract visual reasoning dataset (original
setting).

0 1 2 3 4 5 6 7

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Downstream performance (1,000)

0 1 2 3 4 5 6 7

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Downstream performance (10,000)

0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Downstream performance (100,000)
0
1
2
3
4
5
6
7

Figure 48: Downstream WReN model classification accuracy on the abstract visual reasoning dataset (original
setting).

67

0 1 2 3 4 5 6 70.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Downstream performance (100)

0 1 2 3 4 5 6 7

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Downstream performance (250)

0 1 2 3 4 5 6 7

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Downstream performance (500)
0
1
2
3
4
5
6
7

Figure 49: Downstream WReN model classification accuracy on the abstract visual reasoning dataset
(dimensionality-controlled setting).

0 1 2 3 4 5 6 7
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Downstream performance (1,000)

0 1 2 3 4 5 6 7

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Downstream performance (10,000)

0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Downstream performance (100,000)
0
1
2
3
4
5
6
7

Figure 50: Downstream WReN model classification accuracy on the abstract visual reasoning dataset
(dimensionality-controlled setting).

68

Table 40: Downstream WReN model performance on the abstract visual reasoning dataset

Models Classification accuracy

102 samples 2.5× 102 samples 5× 102 samples 103 samples 104 samples 105 samples

Symbolic scalar-tokened compositional representations

Slow-VAE 0.178 ± 0.008 0.196 ± 0.024 0.196 ± 0.028 0.228 ± 0.030 0.361 ± 0.028 0.396 ± 0.022
Slow-VAE† 0.146 ± 0.084 0.149 ± 0.034 0.163 ± 0.039 0.237 ± 0.023 0.345 ± 0.021 0.959 ± 0.009

Ada-GVAE-k 0.188 ± 0.023 0.198 ± 0.018 0.203 ± 0.007 0.194 ± 0.008 0.295 ± 0.028 0.472 ± 0.037
Ada-GVAE-k† 0.182 ± 0.007 0.234 ± 0.024 0.285 ± 0.025 0.319 ± 0.004 0.662 ± 0.023 0.954 ± 0.009

GVAE 0.171 ± 0.009 0.189 ± 0.008 0.182 ± 0.013 0.188 ± 0.020 0.319 ± 0.038 0.478 ± 0.032
GVAE† 0.180 ± 0.022 0.237 ± 0.018 0.287 ± 0.014 0.306 ± 0.020 0.684 ± 0.020 0.936 ± 0.008
MLVAE 0.171 ± 0.016 0.188 ± 0.009 0.193 ± 0.012 0.194 ± 0.015 0.293 ± 0.012 0.432 ± 0.023
MLVAE† 0.177 ± 0.012 0.221 ± 0.023 0.277 ± 0.023 0.325 ± 0.017 0.644 ± 0.026 0.925 ± 0.024

Shu 0.175 ± 0.009 0.184 ± 0.018 0.200 ± 0.010 0.202 ± 0.014 0.288 ± 0.038 0.310 ± 0.038
Shu† 0.177 ± 0.014 0.230 ± 0.045 0.285 ± 0.028 0.302 ± 0.034 0.444 ± 0.013 0.444 ± 0.013

Symbolic vector-tokened compositional representations

VCT 0.228 ± 0.036 0.229 ± 0.049 0.277 ± 0.039 0.326 ± 0.042 0.371 ± 0.040 0.641 ± 0.039
VCT† 0.191 ± 0.017 0.226 ± 0.031 0.259 ± 0.009 0.282 ± 0.017 0.319 ± 0.018 0.458 ± 0.040

COMET 0.174 ± 0.010 0.241 ± 0.010 0.259 ± 0.016 0.283 ± 0.009 0.221 ± 0.012 0.983 ± 0.006
COMET† 0.190 ± 0.012 0.214 ± 0.004 0.236 ± 0.013 0.213 ± 0.023 0.532 ± 0.348 0.532 ± 0.348

Fully continuous compositional representations

Ours 0.273 ± 0.033 0.312 ± 0.027 0.360 ± 0.033 0.412 ± 0.066 0.560 ± 0.103 0.869 ± 0.024

C.6 Ablation Experiments

We perform the following ablation studies:

• Foundational Model Components: We evaluate the impact of Relaxed Representational
Constraints (RRC) and Distributed Encoding (DE) on disentanglement performance, as
presented in Table 43 . Previous work [30 , 33] has established a positive correlation between
disentanglement and both downstream sample efficiency and overall performance. Therefore,
we do not separately assess the effects of these foundational components on downstream
tasks.

• Auxiliary Model Components: We investigate the influence of additional model compo-
nents, as detailed in Appendix C.6.2 .

• Effect of Soft TPR on Downstream Tasks: Separately, we examine whether Soft TPR
offers advantages over its quantised, explicit counterpart, ψ∗

tpr, in terms of downstream
model performance.

C.6.1 Distributed Encoding Ablation

To perform an ablation study on distributed encoding, we set the role embedding matrix MξR to
the identity matrix. This modification results in maximally sparse role-filler bindings of the form
ξF (fm(i))⊗ ei, specifically:

ξF (fm(i))⊗ ξR(ri) =
[
0 · · · 0 ξF (fm(i)) 0 · · · 0

]
In this setup, the embedded filler ξF (fm(i)) occupies the i-th column of the resulting matrix. Conse-
quently, the TPRs generated by the TPR decoder become degenerate, effectively forming a concate-
nation of filler embeddings:

ψtpr(x) ∼=
(
ξF (fm(1))

⊤, . . . , ξF (fm(NR))
⊤)⊤

This configuration confines each filler’s information to specific dimensions within the representation,
thereby limiting the model’s ability to leverage distributed information across multiple dimensions.

Our experiments reveal moderate reductions in disentanglement performance and increases in loss
compared to the distributed encoding scenario. Considering the rotational isomorphism between
an identity matrix MξR and a (semi)-orthogonal MξR , it is somewhat surprising to observe these
differences under identical conditions (e.g., initialisation and random seeds). While future work

69

should aim to learn linearly independent (but not necessarily orthogonal) MξR , which would more
convincingly account for such results by embedding each filler in overlapping role subspaces and
eliminating the rotational isomorphism with the degenerate TPR case, this behaviour warrants further
analysis and investigation. One potential avenue of investigation is examining whether the sparsity of
binding embeddings ξF (fm(i))⊗ ξR(ri) affects ‘neuron’ specialisation (i.e., the tendency of each
row of the weight matrix to attend only to certain filler-specific information).

Table 41: Effect of DE on disentanglement (MPI3D dataset).
Property FactorVAE score DCI score MIG score BetaVAE score

- DE 0.901 ± 0.102 0.704 ± 0.135 0.530 ± 0.087 0.991 ± 0.021
+ DE (Full) 0.949 ± 0.032 0.828 ± 0.015 0.620 ± 0.067 1.000 ± 0.000

C.6.2 Additional Ablations

We additionally examine the importance of the following properties of our model in producing
explicitly compositional Soft TPR representations: 1) the presence of weak supervision, by setting
λ1 = λ2 = 0 in Equation 7 , 2) the explicit dependency between the quantised filler embeddings
and the decoder output, by instead using the Soft TPR to reconstruct the input image, and 3) the
semi-orthogonality of the role embedding matrix, MξR by removing this constraint in the random
initialisation of MξR , with the results of these ablations illustrated in Table 42 .

Table 42: Effect of model properties on disentanglement performance (MPI3D dataset).
Property DCI Score

- Weak supervision 0.225 ± 0.034
- Explicit filler dependency 0.718 ± 0.051

- Semi orthogonality 0.756 ± 0.039
Full 0.828 ± 0.015

C.6.3 Soft TPR vs TPR

To examine the effect of the Soft TPR on downstream tasks, for each fully trained Soft TPR
representation learner, we extract both the Soft TPR, z, and the Soft TPR’s corresponding quantised
TPR, ψ∗

tpr, and investigate downstream performance using both types of representation. In all plots,
we use the same legend, denoting the explicit TPR as yellow (0) and the Soft TPR as blue (1).
Across all considered cases: i.e., 1) convergence rate of representation learning (as measured by the
downstream model’s ability to effectively leverage representations produced at different stages of
training), 2) sample efficiency of downstream models, and 3) raw performance of downstream models
in the low sample regime, the Soft TPR confers differential performance boosts compared to the
explicit TPR.

Convergence Rate of Representation Learning

70

102 103 104 105

Iteration count

0.0

0.2

0.4

0.6

0.8
RS

q

Cars3D 0
1

Figure 51: Convergence of Soft TPR (0) vs TPR (1) as measured by FoV regression on the Cars3D dataset

102 103 104 105

Iteration count

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RS
q

Shapes3D 0
1

Figure 52: Convergence of Soft TPR (0) vs TPR (1) as measured by FoV regression on the Shapes3D dataset

71

102 103 104 105

Iteration count

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RS
q

MPI3D 0
1

Figure 53: Convergence of Soft TPR (0) vs TPR (1) as measured by FoV regression on the MPI3D dataset

102 103 104 105

n epochs

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Abstract visual reasoning dataset 0
1

Figure 54: Convergence of Soft TPR (0) vs TPR (1) as measured by classification performance on the abstract
visual reasoning dataset

Sample Efficiency of Downstream Models

72

0 1

0.4

0.5

0.6

0.7
Rs

q
ra

tio

Sample efficiency (100/all)

0 1
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Rs
q

ra
tio

Sample efficiency (250/all)
0
1

Figure 55: Downstream regression model sample efficiency on the Cars3D dataset using TPR representations (0)
vs Soft TPR representations (1)

0 1

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Rs
q

ra
tio

Sample efficiency (500/all)

0 1

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1

0.96

0.98

1.00

1.02

1.04
Rs

q
ra

tio

Sample efficiency (10,000/all)
0
1

Figure 56: Downstream regression model sample efficiency on the Cars3D dataset using TPR representations (0)
vs Soft TPR representations (1)

73

0 1
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Rs

q
ra

tio

Sample efficiency (100/all)

0 1

0.4

0.5

0.6

0.7

0.8

Rs
q

ra
tio

Sample efficiency (250/all)
0
1

Figure 57: Downstream regression model sample efficiency on the Shapes3D dataset using TPR representations
(0) vs Soft TPR representations (1)

0 1

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Rs
q

ra
tio

Sample efficiency (500/all)

0 10.75

0.80

0.85

0.90

0.95

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1
0.94

0.96

0.98

1.00

1.02

1.04
Rs

q
ra

tio

Sample efficiency (10,000/all)
0
1

Figure 58: Downstream regression model sample efficiency on the Shapes3D dataset using TPR representations
(0) vs Soft TPR representations (1)

74

0 1

0.45

0.50

0.55

0.60

0.65

0.70
Rs

q
ra

tio

Sample efficiency (100/all)

0 1

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Rs
q

ra
tio

Sample efficiency (250/all)
0
1

Figure 59: Downstream regression model sample efficiency on the MPI3D dataset using TPR representations (0)
vs Soft TPR representations (1)

0 1
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Rs
q

ra
tio

Sample efficiency (500/all)

0 1

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Rs
q

ra
tio

Sample efficiency (1,000/all)

0 1

0.80

0.85

0.90

0.95

1.00
Rs

q
ra

tio

Sample efficiency (10,000/all)
0
1

Figure 60: Downstream regression model sample efficiency on the MPI3D dataset using TPR representations (0)
vs Soft TPR representations (1)

75

0 1
0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Ac
cu

ra
cy

 ra
tio

Sample efficiency (100/100,000)

0 1

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

 ra
tio

Sample efficiency (250/100,000)
0
1

Figure 61: Downstream WReN model sample efficiency on the abstract visual reasoning dataset using TPR
representations (0) vs Soft TPR representations (1)

0 1

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

 ra
tio

Sample efficiency (500/100,000)

0 1

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

 ra
tio

Sample efficiency (1,000/100,000)

0 1
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Ac

cu
ra

cy
 ra

tio

Sample efficiency (10,000/100,000)
0
1

Figure 62: Downstream WReN model sample efficiency on the abstract visual reasoning dataset using TPR
representations (0) vs Soft TPR representations (1)

Low Sample-Regime Performance of Downstream Models

76

0 1
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

RS
q

Downstream performance (100)

0 1

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

RS
q

Downstream performance (250)
0
1

Figure 63: Downstream regression model R2 scores on the Cars3D dataset using TPR representations (0) vs
Soft TPR representations (1)

Figure 64: Downstream regression model R2 scores on the Cars3D dataset using TPR representations (0) vs
Soft TPR representations (1)

77

0 1
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
RS

q

Downstream performance (100)

0 1

0.4

0.5

0.6

0.7

0.8

RS
q

Downstream performance (250)
0
1

Figure 65: Downstream regression model R2 scores on the Shapes3D dataset using TPR representations (0) vs
Soft TPR representations (1)

0 10.75

0.80

0.85

0.90

0.95

RS
q

Downstream performance (1,000)

0 1
0.94

0.96

0.98

1.00

1.02

1.04

RS
q

Downstream performance (10,000)

0 1

0.96

0.98

1.00

1.02

1.04

RS
q

Downstream performance (all)
0
1

Figure 66: Downstream regression model R2 scores on the Shapes3D dataset using TPR representations (0) vs
Soft TPR representations (1)

78

0 1
0.35

0.40

0.45

0.50

0.55

0.60
RS

q

Downstream performance (100)

0 1

0.45

0.50

0.55

0.60

0.65

0.70

RS
q

Downstream performance (250)
0
1

Figure 67: Downstream regression model R2 scores on the MPI3D dataset using TPR representations (0) vs
Soft TPR representations (1)

0 1

0.55

0.60

0.65

0.70

0.75

0.80

RS
q

Downstream performance (1,000)

0 1

0.65

0.70

0.75

0.80

0.85

RS
q

Downstream performance (10,000)

0 1

0.75

0.80

0.85

0.90

RS
q

Downstream performance (all)
0
1

Figure 68: Downstream regression model R2 scores on the MPI3D dataset using TPR representations (0) vs
Soft TPR representations (1)

79

0 1

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350
Ac

cu
ra

cy

Downstream performance (100)

0 1

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Ac
cu

ra
cy

Downstream performance (250)
0
1

Figure 69: Downstream WReN model classification accuracy on the abstract visual reasoning dataset using TPR
representations (0) vs Soft TPR representations (1)

0 1

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Downstream performance (1,000)

0 1
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Downstream performance (10,000)

0 10.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950
Ac

cu
ra

cy
Downstream performance (100,000)

0
1

Figure 70: Downstream WReN model classification accuracy on the abstract visual reasoning dataset using TPR
representations (0) vs Soft TPR representations (1)

C.6.4 Robustness to Hyperparameter Choices

We perform an additional experiment to empiricially verify that our model is robust to different
hyperparameter choices. For the MPI3D dataset, which disentanglement models experience the
greatest difficulty in producing disentangled representations for (see Table 1), we randomly pick
another set of hyperparameters, shown in Table 43 , from the top 5 models based on the MSE loss
criterion. For this randomly chosen hyperparameter configuration, we evaluate the disentanglement
of the representations on the MPI3D dataset produced by the resulting model.

80

Table 43: Hyperparameter values of ablation setting

Hyperparameter MPI3D

Architectural hyperparameters

DR 16
NR (fixed) 10

DF 64
NF 50

Loss function hyperparameters

λ1 0.0000
λ2 0.25378

β (fixed) 0.5

Table 44: Disentanglement metric scores on the MPI3D dataset

Hyperparameter configuration FactorVAE score DCI score BetaVAE score MIG score

Original 0.949 ± 0.032 0.828 ± 0.015 1.000 ± 0.000 0.620 ± 0.067
Ablation 0.911 ± 0.029 0.798 ± 0.031 1.000 ± 0.000 0.590 ± 0.047

D Limitations and Future Work

D.1 Extension to Linguistic Domains

Applying the Soft TPR to the TPR’s typical domain of language is an intriguing future direction,
especially as language can deviate from strict algebraic compositionality – for instance, idiomatic
expressions such as ‘spill the beans’ cannot be understood as a function of their constituents alone.
Soft TPR’s more flexible specification allows it to capture approximate forms of compositionality
precluded from the TPR’s strict algebraic definition (Eq 1), thereby potentially providing the Soft
TPR the ability to better handle the nuance and complexity of language.

To adapt our framework to language, we replace our Conv/Deconv encoder/decoders with simple
RNNs, retrain our TPR decoder, and remove the semi-supervised loss, using Eq 6 as the full loss.
Preliminary results in Table 45 on the BaBI [7] dataset are compared with TPR baselines from AID
[51]. Our Soft TPR Autoencoder does not presently surpass AID, but notable points include:

1. Our use of simpler RRN-based encoders and an MLP-based downstream network, unlike
the more sophisticated architectures of [51].

2. Soft TPR retains its performance improvement above the corresponding explicit TPR it can
be quantised into.

3. The smaller gap between systematic vs non-systematic dataset splits in our model compared
to TPR-RNN (+AID) and FWM.

4. We train our representation learner using self-supervision (reconstruction loss) alone, only
employing supervision on the downstream prediction network, while the baselines employ
strong supervision and end-to-end training to produce representations.

Table 45: Mean word error rate [%] on the sys-bAbI task [51]

Model w/o sys diff w/ sys diff Gap

TPR-RNN 0.79 ± 0.16 8.74 ± 3.74 7.95
TPR-RNN + AID 0.69 ± 0.08 5.61 ± 1.78 4.92

FWM 0.79 ± 0.14 2.85 ± 1.61 2.06
FWM + AID 0.45 ± 0.16 1.21 ± 0.66 0.76
Ours (TPR) 4.54 ± 0.61 6.51 ± 1.23 1.97

Ours (Soft TPR) 2.79 ± 0.24 3.64 ± 0.69 0.85

81

D.2 Need for Weak Supervision

To produce a compositional representation, ψ(x) = C(ψ1(a1), . . . , ψn(an)) (as in Section 3.1), each
representational constituent, ψi(ai), must map 1-1 to a data constituent, ai. Without supervision
(i.e., access only to observational data, {xi}), this is challenging, because the data constituents {ai}
underlying each object, x, are unknown and cannot be identified.

We can frame the above intuition in a more mathematically rigorous way, using the generative
framework. Essentially, as formally proved in [25], it is impossible to identify the true distribution
for the data constituents (generative factors), p(a), using observational data, {xi}, alone as there
are infinitely many bijective functions f : supp(a) → a such that: 1) a and f(a) are completely
entangled (i.e. non-diagonal Jacobian) and 2) the marginal distributions of a and f(a) are identical
(meaning the marginal distributions of the observations are also identical, i.e.,

∫
p(x|a)p(a)da =∫

p(x|f(a))p(f(a))da). Thus, without inductive biases, it is impossible to infer the data constituents
{ai} of any observation, x, from observational data {xi} alone.

To combat this non-identifiability result, in line with [13 , 22 , 31 , 33 , 35], we use weak supervision,
presenting the model with data pairs (x, x′) where x and x′ differ in a subset of FoVs, e.g. β(x) =
{shape/cube, colour/purple, size/large}, β(x′) = {shape/cube, colour/cyan, size/large},
where the FoV types corresponding to the different FoV values are known to the model. Note
that this weak supervision is minimal, only providing the model to access to the differing FoV types in
an index set, I , (i.e., I := {colour}) and not any of the FoV values (i.e., {cube,purple, cyan, large}
are all not known by the model).

Some possible future extensions to reduce this level of weak supervision, or alternative forms of
weak supervision include:

1. Embodied Learning: In the visual domain, some roles, e.g. object position correspond to
affordances. Embodied agents may be able to reduce the need for explicit supervision by
collecting (x, x′) and I through interaction with their environment.

2. Pretrained Filler Embeddings: Initialising the filler embedding matrix, MξF with em-
beddings learnt by a pre-trained vision model could impart knowledge of domain-agnostic
fillers (e.g., colours, shapes), reducing the need to explicitly provide (x, x′) and I to the
model.

3. Segmentation Masks: Segmentation masks for each object may potentially reduce the need
to explicitly provide (x, x′) and I to the model.

D.3 Downstream Utility

Our investigation of downstream utility centers on two selected tasks – FoV regression/classification
and abstract visual reasoning, which aligns with the standard framework for assessing the quality and
downstream utility of compositional representations [26 , 30 , 33 , 40 , 44 , 46]. While existing work [30 ,

 33] demonstrates that explicitly compositional representations enhance downstream sample efficiency
compared to non-compositional representations, a result we improve upon (C.5.1), the broader utility
of compositional representations remains a topic of ongoing exploration [21 , 40 , 42 , 44].

Theoretical perspectives [1 , 2] argue that explicitly compositional representations are fundamental
in the production of productive, systematic, and inferentially coherent thought – 3 key properties
characterising human cognition. Investigating how explicitly compositional representations can
yield empirical benefits across these dimensions represents an essential avenue for future research.
Although preliminary studies [40 , 42 , 44] do not find strong evidence that explicitly compositional
representations improve compositional generalisation (a key aspect of systematicity), [44] suggests
that this finding is because compositional representations are necessary, but not sufficient to induce
systematicity; an explicitly compositional processing approach [6] is also required.

Future work could extend our theoretical framework with the hope of producing empirical results
consistent with the theoretical arguments of [1 , 2]. In particular, as our unbinding module is designed
to provably and efficiently recover structured role-filler constituents from the Soft TPR, it may
be possible to exploit this module to systematically reconfigure roles and fillers from existing
representations to create representations of novel combinations of role-filler bindings (i.e., novel

82

compositional data). This type of ability could prove extremely beneficial in areas such as concept
learning and compositional generalisation.

D.4 Dimensionality

In this subsection, we denote the dimensions of the role and filler embedding spaces as DF and DR

respectively. We also denote the number of fillers as NF and the number of roles as NR.

The Soft TPR belongs to VF ⊗ VR, which is a DF × DR dimensional space, which grows mul-
tiplicatively in DF , DR. Several factors, however, mitigate scalability concerns in light of this
fact:

1. Independence of Embedding Space Dimensionality: We note that the dimensionality
of the role and filler embedding spaces (DR, DF respectively) are properties of the corre-
sponding embedding functions (ξR : R → VR and ξF : F → VF) and thus, can be fixed
independently of the number of roles, NR, the number of fillers, NF , or the number of
total role-filler bindings (which we denote by n) within a domain. Thus, it is possible to
fix the Soft TPR’s dimensionality (DF ×DR) to be smaller than NF ×NR (the number
of roles/FoV types multipled by the number of fillers/FoV tokens) or n (the number of
bindings), which all may be large in complex visual domains. As illustrated in Table 46 ,
the dimensionality of the TPR is smaller than NF ×NR in both the Shapes3D and MPI3D
domains.

2. Relaxing Orthogonality: While DF can be set a priori with no regard to NR, NF or n,
we require DR ≥ NR for semi-orthogonality of the role-embedding matrix MξR , which
guarantees faithful (see proof 2 of A.2) and computationally efficient (see ‘Unbinding’
heading of B.4.1) recoverability of constituents. It is, however, possible to relax this
constraint (i.e., to have DR < NR) to further reduce dimensionality. In this case, semi-
orthogonality of MξR is impossible and hence the recoverability of constituents cannot be
guaranteed, however, there are some less stringent guarantees on the outcome of unbinding
that can still be derived (see p291 of [3] for more details).

We also more explicitly compare the dimensionality of the Soft TPR with baselines in Table 47 .
Scalar-tokened symbolic representations have a low dimensionality of 10 (NR) at the expense of
representational expressivity (each representational constituent ψi(ai) is scalar-valued). In contrast,
Soft TPR has vector-valued representational constituents (i.e. ≈ ξF (fm(i))⊗ ξR(ri)), similar to VCT
and COMET. When compared to these models, the Soft TPR has significantly lower dimensionality
compared to VCT and is comparable with COMET.

Table 46: Comparison of multiplicative dimensionality

Parameter Dataset

Cars3D Shapes3D MPI3D

DR 12 16 12
NR 10 10 10
DF 128 32 32
NF 106 57 50

DF ·DR (TPR dimension) 1536 512 384
NF ·NR 1060 570 500

Table 47: Comparison of dimensionality of representa-
tions

Model
Cars3D Shapes3D MPI3D

Representational dimension

Symbolic scalar-tokened compositional representations

SlowVAE 10 10 10
Ada-GVAE-k 10 10 10

GVAE 10 10 10
ML-VAE 10 10 10

Shu 10 10 10

Symbolic vector-tokened compositional representations

VCT 5120 5120 5120
COMET 640 640 640

Fully continuous compositional representations

Ours (Soft TPR) 1536 512 384

D.5 Computational Cost

In the Soft TPR Autoencoder, the expensive tensor product operation is employed to generate ψ∗
tpr.

Given the computational cost of the tensor product, we more concretely examine the computational

83

cost of training the Soft TPR Autoencoder by computing the FLOPs for a single forward pass
on a batch size of 16 using the open-source implementation of fvcore https://github.com/
facebookresearch/fvcore/tree/main/docs , visible in Table 48 . This data demonstrates that,
despite the tensor product’s computational cost, the mathematically-informed derivation of our model
allows it to obtain compositional representations with vector-valued representational constituents at a
significantly lower cost compared to relevant, vector-tokened baselines (2 orders of magnitude less
than VCT, and 4 orders of magnitude less than COMET).

Future work could explore the use of tensor contraction techniques to reduce computational expense.
For instance [29] uses a Hadamard product based tensor product compression technique. This reduces
computational cost from n2 (tensor product of 2 vectors) to n (Hadamard product), but comprises
the theoretical guarantees on constituent recoverability. We believe developing tensor contraction
techniques within the TPR framework is an important direction for future research, to ensure efficient
TPR-based representations with provable recoverability of constituents.

Table 48: Comparison of FLOPs required for a forward pass of batch size 16

Model
Cars3D Shapes3D MPI3D

Representational dimension

Symbolic scalar-tokened compositional representations

SlowVAE 1.47× 108 1.47× 108 1.47× 108

Ada-GVAE-k 1.47× 108 1.47× 108 1.47× 108

GVAE 1.47× 108 1.47× 108 1.47× 108

ML-VAE 1.47× 108 1.47× 108 1.47× 108

Shu 1.45× 108 1.45× 108 1.45× 108

Symbolic vector-tokened compositional representations

VCT 2.53× 1011 2.53× 1011 2.53× 1011

COMET 5.12× 1013 5.12× 1013 5.12× 1013

Fully continuous compositional representations

Ours (Soft TPR) 3.21× 109 2.93× 109 2.89× 109

84

https://github.com/facebookresearch/fvcore/tree/main/docs
https://github.com/facebookresearch/fvcore/tree/main/docs

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims accurately reflect the paper’s contributions and scope. We provide
theoretical proofs in the Appendix, as well as our complete suite of experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly state in the last paragraph of the paper that future work is to be
done in developing hierarchical Soft TRP representations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ’Limitations’ section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

85

Answer: [Yes]
Justification: We include complete proofs for all theoretical results in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all information (specification of model architecture, computing
resources, hyperparameters) to replicate experimental results in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

86

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets are open-access. We provide sufficient instructions in our Ap-
pendix to reproduce experimental results. The code base is also public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in the Appendix, and additionally, in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present results with standard deviations, as well as the IQR and whiskers
extending to 1.5 times the IQR for all box plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ’Yes’ if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialisation, random drawing of some parameter, or overall
run with given experimental conditions).

87

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the specific GPUs we use for all experiments in the Appendix,
as well as the average amount of time it takes to train the Soft TPR Autoencoder for each
dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines ?
Answer: [Yes]
Justification: Our research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As the central aim of our work relates to the representational form of composi-
tional representations, our research is theoretical in nature and has no immediate societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

88

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In the main paper, as well as the Appendix, we cite the papers associated
with each dataset we use. We additionally make explicit references in the Appendix to
all externally created code that we use in our experiments. Furthermore, if the paper is to
be accepted, we will clearly provide licenses and attribution to the original authors where
applicable in the code files.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

89

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our open access code is reasonably straightforward to understand, especially
when supplemented by the Appendix of this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

90

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

91

	Introduction
	Related Work
	Preliminaries
	A Formal Framework for Compositional Representations
	The TPR Framework

	Methods
	Soft TPR: An Extension to the TPR Framework
	Soft TPR Autoencoder: Learning Distributed and Flexible Compositional Representations

	Results
	Compositional Structure / Disentanglement
	Representation Learner Convergence Rate
	Downstream Models
	Ablation Studies
	Key Insights

	Conclusion
	TPR Framework
	Additional Details
	Formal Proofs
	Shortcomings of Symbolic Compositional Representations and How TPR Helps
	TPR's Distributed Nature and the Equivalence between Degenerate TPRs and Symbolic Representations

	Soft TPR Framework
	Shortcomings of the TPR and How Soft TPR Helps
	Proof that Soft TPRs Do Not Necessarily Have the Explicit Form of a TPR
	Alternative Formulations
	Soft TPR Autoencoder
	Model Hyperparameters and Hyperparameter Tuning

	Results
	Datasets
	Baseline Implementations and Experimental Settings
	Disentanglement
	Representation Learning Convergence
	Downstream Performance
	Ablation Experiments

	Limitations and Future Work
	Extension to Linguistic Domains
	Need for Weak Supervision
	Downstream Utility
	Dimensionality
	Computational Cost

