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Abstract

Drug-target interaction (DTI) prediction is crucial for identifying new therapeutics
and detecting mechanisms of action. While structure-based methods accurately
model physical interactions between a drug and its protein target, cell-based assays
such as Cell Painting can better capture complex DTI interactions. This paper in-
troduces MOTIVE , a Morphological cOmpound Target Interaction Graph dataset
comprising Cell Painting features for 11, 000 genes and 3, 600 compounds, along
with their relationships extracted from seven publicly available databases. We pro-
vide random, cold-source (new drugs), and cold-target (new genes) data splits to en-
able rigorous evaluation under realistic use cases. Our benchmark results show that
graph neural networks that use Cell Painting features consistently outperform those
that learn from graph structure alone, feature-based models, and topological heuris-
tics. MOTIVE accelerates both graph ML research and drug discovery by promot-
ing the development of more reliable DTI prediction models. MOTIVE resources
are available at https://github.com/carpenter-singh-lab/motive.

1 Introduction

High-quality graph benchmarking datasets propel graph machine learning (ML) research. Providing a
diversity of domains, tasks, and evaluation methods, they allow for rigorous and extensive explorations
of structured learning methods. Still, gaps remain in the areas of scalability, network sparsity, and
generalizability under realistic data splits [1]. These challenges are particularly relevant in the
biological domain. The representation of the rich heterogeneity between entities—compounds, genes,
proteins, diseases, phenotypes, side effects, and more—is a nontrivial task due to their varied units and
terminology and highly complex relational structure. This makes biological data an apt, challenging,
and bettering application for graph ML.

Next, effectively predicting drug-target interactions (DTIs), the relationships between chemical
compounds and their protein targets, remains a pressing research area due to its relevance to drug
discovery, drug repurposing, understanding side effects, and virtual screening. The DTI task is
challenging due to the shortage of clean perturbational data and nonspecificity of these interactions.
Even as structure-based methods such as AlphaFold3 are increasingly accomplished at making DTI
predictions, they are mainly based on molecular characteristics [2, 3]. Experimental data uniquely
captures complex biological interactions; the morphological profiles, feature vectors that capture a
cell’s appearance, from the Cell Painting (CP) assay have been shown to model the mechanism of
action, toxicity, and additional properties of compounds [4, 5].

To address the challenges of graph ML, biological data representation, and DTI, we introduce a
publicly available dataset, MOTIVE , which enhances a graph of compound and gene relations with
features from the JUMP Cell Painting dataset [6]. As there is currently no compound-gene graph
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dataset containing empirical node features, MOTIVE will be extremely useful for inductive graph
learning [5] (generalizing to newly connected nodes), cold start recommendations [7] (generalizing
to isolated nodes), and zero-shot scenarios [8] (generalizing to isolated node pairs). In many domains,
making predictions for least-known entities are the most useful real-world applications [9]. Thus, we
accompany MOTIVE with a rigorous framework of data splitting, loading, and evaluation. This work
advances both DTI by incorporating a new modality of information and the strength of graph ML, as
it rises to the challenge of knowledge generalization for inductive link prediction.

2 Related work

Although many graph-based datasets exist, Hu et al. [1] notes that there is a trade-off between scale
and availability of node features. The Open Graph Benchmark Library (OGBL) thus contributed
ogbl-ppa, ogbl-collab, and ogbl-citation2, all large-scale, feature-based link prediction
datasets. The node features in each of these datasets are 58- or 128-dimensional and are a one-hot
representation of the protein type in ogbl-ppa or Word2Vec-based representations of an author’s
publications or of a paper’s contents in ogbl-collab and ogbl-citation2 respectively. The
benchmarking results showed a continued reliance on model learning from previous connections
rather than features, as evidenced by the high performance of Node2Vec embeddings in OGBL tasks,
and indicated a need for richer features. The authors also reported that the graph neural network
(GNN) models underperformed in the link prediction task when using mini-batch training rather than
whole batch and called for improvement in this area for future scalability when learning on large
datasets. In addition, the latter two datasets split their data by time metadata associated with each
edge, and did not explore cold start splits. Evidently, the field still requires graph datasets that 1) are
large-scale, 2) include information-rich features, 3) are accompanied by graph-based data splits (not
metadata-based), and 4) are flexibly trained with mini-batch sampling. We prioritized all four goals
during the curation of MOTIVE and in our experimental design.

As Knowledge Graphs (KGs) have emerged as powerful tools for representing and learning from
network-based data [10], they have often been applied to biological and chemical tasks such as drug
discovery, structure prediction, and DTI [11–13]. Recent surveys on graph-based methods for DTI
prediction [14, 15] show few efforts represent drugs and genes with external features. Two related
approaches are Schwarz et al. [16], which used gene expression as input to the last layer in a late-
fusion manner, and Balamuralidhar et al. [17], which used topological features as node representations.
While Balamuralidhar et al. [17] does enable inductive predictions on newly connected nodes, it
fails to make inferences on completely isolated nodes in cold start scenarios. To our knowledge, no
graph-based dataset exists where the features of compounds and gene nodes are represented by their
morphological profiles.

Meanwhile, in biological image analysis, fluorescence labeling of cells now allows for the visual-
ization of cell morphology, internal structures, and processes at unprecedented spatial and temporal
resolution. Imaging precisely captures the changes to a cell after it has undergone a chemical
or genetic perturbation and sheds light on relationships such as DTI, functions, and mechanisms.
Additionally, the recent publication of the JUMP Cell Painting dataset [6] now provides 136, 000
chemical and genetic perturbational profiles for the DTI task. In recent applications of CP to DTI,
Rohban et al. [18] matched compounds to a small set of genes based on morphological feature
vector similarities, and we will extend this work by using machine learning to capture non-linear
compound-gene relationships for a much larger gene set. Next, Herman et al. [4] developed a deep
learning model to predict toxicity assays from chemical structures and morphological profiles but
did not exploit the connectivity network of compounds and gene interactions. Our method builds on
this approach by incorporating the morphological profiles of both compounds and genes in a graph
and using the message-passing framework to leverage such network connectivity. Recently, Iyer
et al. [19] formulated the DTI task as a binary classification of gene-compound pairs under different
data splits and developed a transformer-based learning approach to predict drug targets from Cell
Painting profiles. Although this approach is similar to our proposed setup, their dataset contains fewer
nodes, 302 compounds and 160 genes, and does not include gene-gene and compound-compound
interactions.

The graph ML community needs large-scale datasets with rich, empirical node features, and well-
defined data splitting, loading, and evaluation procedures that advance scalability (training in batches)
and generalizability (inductive link prediction). The drug discovery community is motivated by
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reliable DTI predictions, especially for newly discovered or assayed compounds and genes with no
known relationships. The biological image analysis community is likewise curious about the reach,
applicability, and predictive power of the morphological profiles of perturbed cells. To address these
needs across multiple domains, we contribute the MOTIVE dataset.

3 The MOTIVE dataset

The MOTIVE dataset leverages drug-target knowledge graphs and image-based profiles of chemically
or genetically perturbed cells. It comprises 11, 509 genes, 3, 632 compounds, and 303, 156 compound-
compound, compound-gene, and gene-gene interactions collected from seven publicly available
databases.

3.1 Morphological profiles extraction

Every gene (each of which produces a particular protein) and compound is represented with its
image-based profile from the JUMP CP dataset [6]. JUMP CP images capture a cell’s morphology
after being perturbed by a chemical compound or a genetic edit. Each type of genetic perturbation,
CRISPR knockouts or ORF over-expressions, involves a different set of genes. We created and
published a version of MOTIVE for each gene set but chose to use the ORF genes for the analysis
presented in this paper due to slightly stronger downstream performance. The morphological profiles
were extracted from each image in the JUMP CP dataset using CellProfiler [20], a software that
segments individual cells in the image and measures thousands of features for each cell. Then, the
data was prepared according to the protocols in Arevalo et al. [21] and Chandrasekaran et al. [6],
which extensively optimize separate pipelines for compound and gene perturbations.

For compound perturbations, we first filtered out features with low variance, then applied median
absolute deviation normalization, a rank-inverse normal transformation (INT), and Harmony [22] to
reduce the batch effects. We then selected final features based on correlation analysis. For genetic
perturbations, we subtracted the mean vector per well from each feature vector to account for well
position effects, replaced the INT transformation with an outlier removal step, and aggregated the
replicates (usually five) of each perturbation using median profiles to make the representations
robust to low-quality images. In our experience, these comprised less than 5% of the data and were
uncorrelated across replicates on different plates. After the correction and preprocessing steps, each
compound and gene is represented by a 737-dimensional and 722-dimensional vector, respectively.
The processing pipelines for the morphological profiles are available at https://github.com/
broadinstitute/jump-profiling-recipe/tree/v0.1.0.

3.2 Annotation collection

Database compound
gene

compound
compound

gene
gene

compound
identifier

BioKG [23] ✓ ✓ ✓ DrugBank
DGIdb [24] ✓ ChEMBL
DRHub [25] ✓ PubChem
Hetionet [12] ✓ ✓ ✓ DrugBank
OpenBioLink [26] ✓ ✓ PubChem
PharMeBINet [27] ✓ ✓ ✓ DrugBank
PrimeKG [11] ✓ ✓ ✓ DrugBank

Table 1: Databases integrated in MOTIVE . We extracted all compound-gene, compound-compound
and gene-gene annotations. Compound IDs were mapped to the InChIKey representations, and gene
IDs were mapped to the NCBI gene symbols.

We aggregated the compound-compound, compound-gene and gene-gene annotations in MOTIVE
from seven publicly available databases listed in Table 1. Our choice followed the comprehensive
review of Bonner et al. [28], which categorizes relevant biomedical datasets and KGs based on the
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entities they contain and how well they fit to specific tasks. We unified the compound IDs by mapping
them to their core molecular skeleton identifiers (InChIKey) using the MyChem [29] and UniChem
[30] databases and unified the gene IDs using their NCBI gene symbols 2. We then combined all of
the pairwise interactions we collected across databases with the JUMP CP features, keeping only the
pairs where both entities had existing features and using only the pairs for which we had interactions.

3.3 Graph construction

Since DTI is defined by identifying the protein targets for a given drug, we assigned nodes associated
with compounds as source nodes and nodes associated with genes as target nodes. We refer to
compound-gene, compound-compound, and gene-gene as source-target, source-source, and target-
target interactions respectively. We defined each source or target as a node and each interaction as
an undirected edge. The representation of each node was set as its processed morphological feature
vector as described in Section 3.2.

We defined our graph G = (V, E) as follows. V = S ∪ T is the union of the sets of sources and
targets in our dataset. Every s ∈ S and t ∈ T is represented by a feature vector xs ∈ Rn and
xt ∈ Rm, respectively. The edge set E = SS ∪ ST ∪ TT is the union of our source-source, source-
target, and target-target edges, where each edge is defined as a pair of node indices: (su, sv) ∈ SS,
(su, tv) ∈ ST , and (tu, tv) ∈ TT . We defined four different graph structures to assess the information
added by each of our edge types: a bipartite graph which only includes ST edges, a source-expanded
(s_expanded) graph which includes ST and SS edges, a target-expanded (t_expanded) graph which
includes ST and TT edges, and a source and target expanded (st_expanded) graph which includes
all three edge types (statistics in Table 2). Note that, unless otherwise stated, our evaluated models
received the st_expanded graph as it maximized the available information in MOTIVE .

Graph
Type # Nodes # ST

Edges
# Other
Edges

Avg. Node
Degree

Med. Node
Degree

bipartite
S: 2,961
T: 4,505

24,798
SS: 0
TT: 0

S: 8.4
T: 5.5

S: 3.0
T: 3.0

s_expanded
S: 3,632
T: 4,505

24,798
SS: 75,330
TT: 0

S: 48.3
T: 5.5

S: 19.5
T: 3.0

t_expanded
S: 2,961
T: 11,509

24,798
SS: 0
TT: 203,028

S: 8.4
T: 37.4

S: 3.0
T: 25.0

st_expanded
S: 3,632
T: 11,509

24,798
SS: 75,330
TT: 203,028

S: 48.3
T: 37.4

S: 19.5
T: 25.0

Table 2: Statistics for the four graph structures.

3.4 Data splitting

We developed two different heuristics to split our graph into training, validation, and test sets based
on the random split and cold start split originally defined for recommendation systems [7].

In the random split scenario, we used a 70/10/20 ratio to randomly select and split every ST edge
into train, validation, and test sets and included the full set of SS and TT edges in training (Figure 1).
In this case, the link prediction task is transductive, as the nodes are fixed from the start of training
and the model will predict edges on entities it has learned on. Negative edges are sampled for each
batch of data by randomly selecting source-target pairs that are not in the ST edges.

The cold start split allows for inductive link prediction, as it involves predicting edges where at least
one node was not present during training. We applied the cold start split to either the source or target
nodes, denoted by cold-source split or cold-target split. In cold-source split (second row of Figure 1),
every source node in our graph is randomly labeled as either train, validation, or test in a 70/10/20
ratio. All ST edges are subsequently labeled in accordance with the label of its source node. Next,
all SS edges are labeled by their most conservative labels: any edge with at least one test source is

2https://www.ncbi.nlm.nih.gov/gene/
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Figure 1: Schematic of the random split (top row) and cold-source split (bottom row). The left-
most graph illustrates the actual partitioning of the edges, and the three graphs to the right show
which nodes and edges are visible to the GNN models during training, validation, and testing. The
number of edges in each partition is not representative of our true 70/10/20 ratios. Cold-target split is
symmetrical to cold-source split. The model aggregates neighbor features via the message-passing
edges (solid lines) and makes predictions on the supervision edges (dotted lines).

labeled test, any edge with no test sources but at least one validation source is labeled validation,
and any edge with two train sources is labeled train. All TT edges are included in training. This
data split prevents data leakage of any kind and enforces that at validation or test time, the model has
never seen any source node in the ST edges. Additionally, negative edges are sampled for each batch
of data by our custom sampler class, built for inductive learning, which only considers the sampled
source nodes and all of target nodes, in the ST edges. Details about our negative sampling algorithm
can be found in Section 3.5.

Cold-target split is constructed in a symmetrical manner to cold-source split. The cold splits are
useful for considering how the model will generalize to unseen and isolated sources and targets.
When the node embeddings represent real-world features, models trained under this stringency will
be especially useful in predicting novel yet relevant relationships from empirical data.

3.5 Negative sampling algorithm

Scalable gradient-based methods process data in randomly sampled batches, or subgraphs in the graph
domain. Link prediction approaches commonly generate negative edges by dynamically sampling
disconnected nodes. To prevent data leakage, the sampled negative edges during training must not
include cold instances from validation or testing. However, we observed that the negative sampling
strategy in PyG [31], a widely used GNN framework, lacks the granularity to control the sampled
population. To address this limitation, we developed a custom negative sampling algorithm that
guarantees test node isolation and enables proper evaluation of link prediction models.

We used a negative sampling ratio (r) of 1:1 during training and 1:10 during testing. For random split,
our algorithm samples the negative edges between all unique source and target nodes within the ST
edges in the batch. For cold-source split, the head of the negative edge is sampled from the unique
sources in the supervision ST edges in the batch, and the tail of the negative edge is sampled from
ST edges in the batch. Algorithm 1 details the cold-source split negative sampling procedure. The
process is symmetrical for leave-out-target.
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Algorithm 1: Negative sampling for cold-source split

Input: ST = {(su, tv) | ∃ an edge between source u and target v}: all ground truth ST edges
BP ⊆ ST : positive supervision edges in batch
r ∈ Z>0: negative sampling ratio
f(A, k): sample k elements from set A
n: number of sampling tries

Output: B′: positive and negative supervision edges in batch
c← |BP | ▷ # positives;
SB ← {s | ∃(s, t) ∈ BP };
TST ← {t | ∃(s, t) ∈ ST};
for i := 0 to n do

BN ← f ({(s, t) | s ∈ SB ∧ t ∈ TST }, 2cr) ▷ Sampled negative edges;
BN ← BN \ ST ;
if |BN | ≥ cr then

B′
N ← f (BN , cr);

B′ ← BP ∪B′
N ;

return B′;
end

end

3.6 Models

We experimented with three different types of GNN convolutional layers in our model, each with a
unique learning algorithm. The algorithms differ in how they incorporate the features of neighbor
nodes into a node’s learned representation. GraphSAGE (Graph SAmple and aggreGatE) [5] achieves
inductive representation learning on large graphs by sampling from neighbor node representations
and applying an aggregation function (e.g. a weighted average) to compute each node’s hidden
embedding. GIN (Graph Isomorphism Network) [32] adds a Multilayer Perceptron (MLP) to
represent the composition of neighbor node features and achieves discriminative power equal to the
Weisfeiler Lehman graph isomorphism test. Finally, GATv2 (Graph Attention Network v2) [33]
implements dynamic graph attention which weights neighbor representations according to each query
of interest. We constructed separate models using each of these GNN algorithms (GraphSAGECP ,
GINCP , and GATv2CP ) as the convolution layer, and we used the JUMP Cell Painting features as the
nodal representations for each. We chose to only initialize the node features using their image-based
features (as opposed to chemical structure-based or protein structure-based) so that compounds and
genes would share a modality of representation. This ensures similar statistical properties between
node types and makes it easier to discover cross-modal relationships [34].

All three GNN models share the same architecture. First, the input embeddings of every source
and target node are initialized and fixed as their respective feature vectors xs and xt. Two linear
layers then transform the source and target node embeddings into the same embedding space.
These transformed embeddings pass through two GNN layers (chosen from one of the three graph
convolutional algorithms above), separated by a leaky ReLU activation function for nonlinearity.
Broadly, each GNN layer combines the feature vector of the node of interest with some aggregation
of the feature vectors from the neighbors of the node of interest. The aggregation function changes
according to the three GNN algorithms. Isolated nodes rely solely on CP features due to the lack
of neighboring signals. The two GNN layers indicate that the feature vectors of neighbor nodes
within a radius of 2 will be used to compute the hidden embedding for each node. An additional
skip connection feeds the output of the first GNN layer (an aggregation of the feature vectors in the
neighborhood of radius 1) into the final embedding, prioritizing shorter distance neighbors. Finally, a
classifier head outputs the sigmoid-transformed dot product of the embeddings for each source and
target node pair in the supervision edge set. Algorithm 2 in Appendix A further describes the forward
pass of our GNNs to make the link predictions.

We benchmarked our model with a featureless graph-based model that randomly initializes the source
and target input embeddings. We opted to use the simple GraphSAGE convolutional layer in our
model because all of the node features are random vectors in this case. This model, GraphSAGEembs,
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shares the same architecture as the other GNNs. Importantly, GraphSAGEembs does not have
informative feature vectors for each source and target node at the start of training. We also applied
one baseline heuristic for topology-based link predictions, and two baseline models for feature-based
link predictions. For the former, we used the shortest path between source and target nodes as a
proxy for their similarity to evaluate the predictive power of graph structure alone. For the latter, we
implemented a Bilinear model and an MLP, which both rely solely on node features to predict links.
The Bilinear model learns a mapping y = xTWz to transform two sets of feature vectors into the
same embedding space, then computes the similarity between the vectors. The MLP learns hidden
embeddings of the feature vectors via two fully connected layers and ReLU activation functions
for nonlinearity, then uses a Bilinear head to make link predictions. These latter models ignore the
known relational information between entities when predicting links. Across the seven models, we
could readily evaluate the performance enhancements coming from adding node features or graph
structure and determine the most useful learning approach for each of our scenarios. See Appendix B
for experimental details and evaluation metric choices.

4 Results

4.1 DTI prediction improves with CP features

Input Model F1 Hits@500 Precision@500
GINCP 0.5238± 0.040 0.4552 ±0.017 0.9920 ±0.005

Graph+CP GATv2CP 0.4169±0.007 0.2219±0.018 0.8452±0.045
GraphSAGECP 0.3836±0.029 0.2637±0.023 0.9056±0.012

CP MLP 0.3829±0.008 0.2545±0.011 0.8456±0.015
Bilinear 0.1703±0.003 0.0213±0.001 0.1812±0.008

Graph GraphSAGEembs 0.3456±0.006 0.2254±0.013 0.8476±0.029
Shortest Path — 0.0025 0.0

Table 3: Test metrics (all with maximum value=1), averaged over 5 runs, for all models in the
random split scenario. GNNs initialized with Cell Painting data are indicated with a CP subscript.
The shortest path heuristic is fixed across runs, and thus does not have standard deviation values. In
addition, only rank based metrics were computed for shortest path since there is no classification
threshold. The metric parameter k=500 corresponds to the top 1% of the test edges.

First, we evaluated all of our models on transductive link predictions (random split). We used the
shortest path heuristic, a non-learning baseline, to predict links based on graph topology (last row of
Table 3). We scored each positive and negative ST edge in our test set by the shortest path length
between the two nodes and computed rank based metrics based on these scores. This heuristic
fails to effectively predict links on MOTIVE , proving the task nontrivial and indicating a need for
learning-based methods. The low prediction scores from the Bilinear and MLP models (rows 4 and
5 of Table 3) also indicate that predicting edges purely based on the similarity of source and target
node features is inadequate. Still, these models significantly outperform the non-learning baseline,
signaling the information contained in the node features.

Next, we see a large score increase from the feature-based benchmarks to the GNN models, which
make use of the graph structure and CP node features. The predictions made by the learned represen-
tations of source and target nodes from topology alone (GraphSAGEembs) achieve a Precision@500
score of 84.76%, which highlights the richness of the relational information between nodes. Finally,
the GINCP model achieves the best performance across metrics, obtaining a Hits@500 score of
45.54% and a Precision@500 score of 99.20%. This result supports our hypothesis and demonstrates
that adding CP node features to graph structure benefits transductive link prediction.

4.2 Inductive link prediction benefits from graph structure and CP features

We evaluated the models on inductive link prediction tasks using the cold data splits, which require
informative node features as the left out nodes are completely isolated during evaluation [5]. In this
scenario, GraphSAGEembs is not applicable as it learns representations for nodes using projection
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Split Model F1 Hits@500 Precision@500

GINCP 0.2827±0.018 0.1078±0.008 0.5872±0.028
GraphSAGECP 0.2283±0.014 0.0439±0.013 0.3120±0.079

Source GATv2CP 0.2433±0.009 0.0330±0.002 0.2476±0.004
MLP 0.1876±0.006 0.0269±0.009 0.2168±0.063

Bilinear 0.1593±0.004 0.0145±0.003 0.1256±0.029
GINCP 0.3916±0.016 0.2744±0.020 0.9624±0.034

GraphSAGECP 0.3494±0.012 0.1988±0.013 0.7056±0.031
Target GATv2CP 0.2805±0.007 0.1966±0.019 0.9540±0.043

MLP 0.3408±0.014 0.1837±0.010 0.6552±0.025
Bilinear 0.1396±0.001 0.0122±0.001 0.1024±0.004

Table 4: Test metrics (all with maximum value=1), averaged over 5 runs, for all feature-based models.
The top five rows show the cold-source split results and the bottom five rows show the cold-target
split results.

layers and is thus limited to making predictions for nodes that it has already seen during training (i.e.
transductive link predictions). The shortest path heuristic is also not applicable, as it is unable to
handle isolated nodes unreachable by any path.

During inductive link prediction, all of the models only have access to the feature vectors of left-out
nodes, as they are isolated and without edge connections. For both cold-source and cold-target split,
GINCP greatly outperformed all other models. The improved predictions by GINCP can be attributed
to it having learned improved source and target node embeddings by leveraging both the node features
and the relational information present in the graph structure during training. Except for the F1 score
of the GATv2 model in the cold-target split, all of the GNN models outperform the feature-based
models. This supports our hypothesis that knowing the relationships between sources and targets
improves DTI prediction.

Inductive link prediction is useful in real world applications as the model is learning about and making
predictions on entities that we previously knew very little about. The cold-source split is especially
relevant for drug discovery, as it simulates the scenario where all genes are known and the DTI model
is tasked with identifying new compounds associated with certain disease-related genes. Furthermore,
empirical features, such as morphological profiles, prove to be valuable node representations. If
we collect experimental data for a newly discovered compound or unexplored gene, GINCP and
similar models would be able to leverage known relationships between other compounds and genes
to make better inductive link predictions for the new entity. This underscores the value of integrating
assay-based data into graph-based models to enhance their predictive capabilities.

4.3 Ablation studies with graph structure

We investigated the contribution of each edge type (source-target, source-source, and target-target) by
comparing the performances of the GraphSAGE models using the four graph structures (Figure 2).
While this analysis can apply to any of the GNN models, we chose GraphSAGE such that we could
compare the feature-based and embeddings-based cases. We see that GraphSAGECP outperforms
GraphSAGEembs for almost every graph structure and metric. More analyses should be done to
investigate how the difference in performance fluctuates with the addition of edge types in order
to understand how the usefulness of the node features fluctuates with graph sparsity. From these
initial results, it appears that as the graph becomes denser with the addition of more edge types, the
structural information begins to dominate, reducing the relative contribution of the node features.
These findings highlight the complementary nature of node features and graph structure in the link
prediction task.
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4.4 Zero-shot prediction potential

To assess the model’s zero-shot prediction potential, where neither the source nor the target nodes
are seen in training or validation, we computed the average precision (AP) scores for each source
and target node to evaluate how well the model was able to retrieve its true links. In this cold-source
split scenario, all source nodes in the test set are completely unseen during training, and most but not
all target nodes are seen (a target node may not be seen if it is only connected to left out sources).
Thus, the model’s prediction of an edge with isolated endpoints, i.e. both source and target are unseen
during training, is a zero-shot link prediction. As shown in Figure 3, the presence of unseen target
nodes with high AP scores (see the rightmost blue bar in the Target panel) shows that for some node
pairs, the model is able to predict many true links even though both the source and target nodes
are isolated at test time. This suggests the model, trained on CP features and known drug-gene
relationships, can predict links between completely novel drugs and genes. Further work should be
done to explore the efficacy of DTI predictions in the zero-shot setting.

5 Discussion

Predicting the complex relationships between chemical compounds and genes is ambitious. Develop-
ing models to accurately predict these high-order interactions, particularly in inductive or zero-shot
settings, is even more challenging. The MOTIVE dataset addresses these challenges by integrating
morphological features of cells and known compound-gene relationships. By providing a large-scale,
feature-rich, and extensively annotated dataset, MOTIVE enables the development and benchmark-
ing of graph-based models for DTI prediction in transductive, inductive, and zero-shot scenarios.
One of the key strengths of MOTIVE lies in its rigor. The morphological profiles were extracted
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from the JUMP CP dataset using a standardized pipeline, ensuring consistency and reproducibility.
Carefully curating annotations prioritized data quality and reliability. The constructed dataset also
offers stringent protection against data leakage of any kind while providing thorough and challenging
forms of data splitting, loading, minibatch training (requiring subgraphs), sampling, and evaluation
procedures.

We acknowledge certain limitations in MOTIVE . As discussed in Section 4.3, the effectiveness of
CP features may be reduced when the graph is densely connected. Additionally, some perturbations
may not induce significant morphological changes, potentially leading to uninformative node repre-
sentations and false positive predictions. To address these issues, we propose isolating samples with
distinguishable morphologies and reanalyzing them to assess the impact on performance. Finally, we
recognize that the availability of image-based profiles remains a limitation for expanding our DTI
graph; we propose that MOTIVE could be extended by training a generative model that translates the
compound structure to in-silico Cell Painting readouts, as similarly explored in Zapata et al. [35].
Also, if the network is extended to include multiple modalities, then it could also be adapted to make
predictions for nodes with missing modalities [36].

Future work may incorporate both the ORF and CRISPR gene features as a form of multimodal inputs
in the graph. MOTIVE could also be expanded to include alternative representations for compound
and gene nodes (e.g. protein structures in addition to image-based profiles) to capture known structural
and sequencing relationships. The complementary information between profiles may then lead to
higher quality DTI predictions. Additionally, methods may be extended to predict heterogeneous
interactions rather than just binary classifications. Finally, developing end-to-end architectures to learn
node embeddings directly from images could better exploit the morphological information. MOTIVE
represents a valuable resource for the machine learning community, particularly for those interested
in graph-based methods and their applications in drug discovery. By fostering interdisciplinary
collaborations across graph ML, biological imaging, and drug discovery, MOTIVE has the potential
to accelerate progress for the challenging and complex task of DTI prediction.
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[23] Walsh, B., Mohamed, S.K. and Nováček, V. Biokg: A knowledge graph for relational learning
on biological data. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, CIKM ’20, page 3173–3180, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450368599. doi: 10.1145/3340531.3412776.

11



[24] Freshour, S.L., Kiwala, S., Cotto, K.C. et al. Integration of the drug–gene interaction database
(dgidb 4.0) with open crowdsource efforts. Nucleic Acids Research, 49(D1):D1144–D1151,
November 2020. ISSN 1362-4962. doi: 10.1093/nar/gkaa1084.

[25] Corsello, S.M., Bittker, J.A., Liu, Z. et al. The drug repurposing hub: a next-generation
drug library and information resource. Nature Medicine, 23(4):405–408, April 2017. ISSN
1546-170X. doi: 10.1038/nm.4306.

[26] Breit, A., Ott, S., Agibetov, A. and Samwald, M. OpenBioLink: a benchmarking framework
for large-scale biomedical link prediction. Bioinformatics, 36(13):4097–4098, 04 2020. ISSN
1367-4803. doi: 10.1093/bioinformatics/btaa274.

[27] Königs, C., Friedrichs, M. and Dietrich, T. The heterogeneous pharmacological medical
biochemical network pharmebinet. Scientific Data, 9(1), July 2022. ISSN 2052-4463. doi:
10.1038/s41597-022-01510-3.

[28] Bonner, S., Barrett, I.P., Ye, C. et al. A review of biomedical datasets relating to drug discovery:
a knowledge graph perspective. Briefings in Bioinformatics, 23(6), September 2022. ISSN
1477-4054. doi: 10.1093/bib/bbac404.

[29] Lelong, S., Zhou, X., Afrasiabi, C. et al. BioThings SDK: a toolkit for building high-performance
data APIs in biomedical research. Bioinformatics, 38(7):2077–2079, 01 2022. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btac017.

[30] Chambers, J., Davies, M., Gaulton, A. et al. Unichem: a unified chemical structure cross-
referencing and identifier tracking system. Journal of Cheminformatics, 5(1), January 2013.
ISSN 1758-2946. doi: 10.1186/1758-2946-5-3.

[31] Fey, M. and Lenssen, J.E. Fast graph representation learning with pytorch geometric. In
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[32] Xu, K., Hu, W., Leskovec, J. and Jegelka, S. How powerful are graph neural networks?, 2019.

[33] Brody, S., Alon, U. and Yahav, E. How attentive are graph attention networks?, 2022.

[34] Srivastava, N. and Salakhutdinov, R. Multimodal learning with deep boltzmann machines. In
Journal of machine learning research, 2012.

[35] Zapata, P.A.M., Rouquié, D., Wichard, J. et al. Cell morphology-guided de novo hit design by
conditioning gans on phenotypic image features. Digital Discovery, 2022.

[36] Wang, H., Chen, Y., Ma, C. et al. Multi-modal learning with missing modality via shared-
specific feature modelling. 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15878–15887, 2023.

[37] Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn.
Res., 13:281–305, feb 2012. ISSN 1532-4435.

12



Appendix

A GraphSAGECP forward pass algorithm

Algorithm 2: GCP link prediction algorithm

Input: G(V, E)
Input features {xs,∀s ∈ S} and {xt,∀t ∈ T }
Embedding weight matrices Es and Et

Message Passing Network C1 and C2

Non-linearity functions reLU and σ

Neighborhood function N : v → 2V

Output: yuv,∀(u, v) ∈ supervision edge set STsup

h0
s ← xsEs,∀s ∈ S ▷ Map Xs to shared ft. space;

h0
t ← xtEt,∀t ∈ T ▷ Map Xt to shared ft. space;

for v ∈ V do
h1
v ← C1({h0

i ;∀i ∈ N (v)});
h1
v ← reLU(

h1
v

∥h1
v∥2

);
end
for v ∈ V do

h2
v ← C2({h1

i ;∀i ∈ N (v)});
h2
v ←

h2
v

∥h2
v∥2

;
end
zv ← h1

v + h2
v,∀v ∈ V;

for (u, v) ∈ STsup do
yuv = σ(zu · zv);

end

B Experimental details

We performed a random hyperparameter search [37] for each model and data split for the number
of hidden channels (64, 128, 256), learning rate ([10−6, 10−2]), and weight decay ([10−5, 1]). We
sampled negative edges at a ratio of 1:1 at training and validation time, and 1:10 at test time. We
trained each model for 1000 epochs, computed the Binary Cross Entropy loss between the prediction
scores for the supervision edges and their ground truth labels, and used an Adam Optimizer to make
weight updates. At validation and test time, we computed the F1 scores of the predicted edges using
the best threshold found during validation time. We also computed two rank-based metrics, Hits@500
and Precision@500, to better capture how the model distinguishes between positive and negative
samples. Hits@k quantifies the fraction of positive test edges (total = n) that rank (r) within the top k
negative test edge scores 3. Precision@k quantifies the fraction of the top k predicted scores that are
assigned to true positive edges. In both cases, k = 500 was chosen to isolate the around 1% of the
test edge scores. To define these metrics more formally, let k− represent the rank of the kth-ranked
negative edge. Then, the following equations apply:

Hk(r1, r2, . . . , rn) =
1

n
Σn

i=1I[ri ≤ k−], I =
{
1 ri ≤ k−

0 ri > k−
(1)

Pk(r1, r2, . . . , rk) =
1

k
Σk

i=1I[ri], I =
{
1 i is a positive edge
0 i is a negative edge

(2)

We ran each scenario five times, and we reported the average performance for each model as well as
the standard deviation scores in Tables 3 and 4. We set a random seed for all runs and established the

3https://ogb.stanford.edu/docs/linkprop/
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same data split for each of our splitting methods, such that all variance in performance must come
from batch sampling by the data loader and GPU non-determinism. All experiments ran in a NixOS
server with a AMD Ryzen Threadripper PRO 7995WX processor and an NVIDIA RTX 6000 GPU
card.
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