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Abstract

Cross-modal (image-to-text and text-to-image) retrieval is an established task
used in evaluation benchmarks to test the performance of vision-language mod-
els (VLMs). Several state-of-the-art VLMs (e.g. CLIP, BLIP-2) have achieved
near-perfect performance on widely-used image-text retrieval benchmarks such as
MSCOCO-Test-5K and Flickr30K-Test-1K. As a measure of out-of-distribution
(OOD) generalization, prior works rely on zero-shot performance evaluated on
one dataset (Flickr) using a VLM finetuned on another one (MSCOCO). We argue
that such comparisons are insufficient to assess the OOD generalization capability
of models due to high visual and linguistic similarity between the evaluation and
finetuning datasets. To address this gap, we introduce WIKIDO (drawn from
Wikipedia Diversity Observatory), a new cross-modal retrieval benchmark to as-
sess the OOD generalization capabilities of pretrained VLMs. This consists of
384K image-text pairs from Wikipedia with domain labels, along with carefully
curated, human-verified in-distribution (ID) and OOD test sets of size 3K each.
The image-text pairs are very diverse in topics. We evaluate different VLMs of
varying capacity on the WIKIDO benchmark; BLIP-2 achieves zero-shot perfor-
mance of R@1≈ 66% on the OOD test set, compared to ≈ 81% on MSCOCO
and ≈ 95% on Flickr. When fine-tuned on WIKIDO, the R@1 improvement is
at most ≈ 5% on OOD instances compared to ≈ 12% on ID instances. WIKIDO
offers a strong cross-modal retrieval benchmark for current VLMs, especially for
evaluating OOD generalization. Our benchmark is hosted as a competition at
https://kaggle.com/competitions/wikido24 with public access to dataset
and code.

1 Introduction

Vision-language models (VLMs) are multimodal models that jointly reason on image and text. VLMs
are pretrained on very large amounts of diverse image and text data, thus making them capable of
robust reasoning. A true measure of this capability is to evaluate how well VLMs generalize to
out-of-distribution (OOD) instances. This has been addressed in prior work [1, 2] by finetuning
VLMs on a given corpus for a given task and conducting zero-shot evaluations on a new corpus.
However, the mere use of an unseen corpus for evaluation does not imply it is OOD. For a more
accurate characterization of generalization, the OOD nature of the evaluation data should be carefully
established.

∗Work done as a student at IIT Bombay.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://kaggle.com/competitions/wikido24


Figure 1: Distribution of topics in the final filtered dataset

In this work, we present a new benchmark WIKIDO that serves as a testbed for VLMs to measure
how well they generalize to OOD instances. WIKIDO consists of image-text data derived from
Wikipedia Diversity Observatory, a diverse source of Wikipedia articles spanning several diversity
axes including geography, gender, ethnicity and domains/topics. We focus on the “domains" axis that
is most diverse in terms of coverage and spans different topics (as determined via topic labels assigned
to each article) such as food, books, fashion and sports. We curate a dataset consisting of 1) 354K
training images with corresponding text and 2) two evaluation sets – an in-domain (ID) set and an
out-of-domain (OOD) set2 drawn from domains that are seen and unseen during training, respectively.
Our OOD evaluation set is carefully constructed to be used as a reliable testbed for VLMs.

Figure 1 highlights the main aspects of WIKIDO including the domains spanned by the articles, their
distribution and a few illustrative image-text pairs. In this work, we focus on cross-modal (image-to-
text and text-to-image) retrieval tasks. We show retrieval performance of well-known VLMs, namely
CLIP [3], BLIP [1] and BLIP-2 [2], on WIKIDO test sets before and after finetuning on the WIKIDO
training instances. The best-scoring VLM, CLIP, achieves a modest zero-shot R@1 of 68% on the
OOD test set. Finetuning on the WIKIDO train set improves zero-shot R@1 on the OOD set by only
5%, while zero-shot R@1 on the ID set improves substantially more by 12% further highlighting
the difference between the two evaluation sets. We have hosted our code, WIKIDO datasets and a
leaderboard with our current VLMs at https://kaggle.com/competitions/wikido24.

2 Related Work

Image-text datasets. The rapid progress of vision-language models (VLMs) in recent years can
be largely attributed to the emergence of high-quality multimodal datasets. These include large,
automatically-filtered datasets that are crawled from the web and smaller datasets that are human-
annotated. The larger datasets comprising millions of instances include SBU [4], CC3M [5], CC12M
[6], YFCC-100M [7], WIT [8], LAION-400M [9], and LAION-5B [10]. These large datasets have

2OOD might be more appropriately expanded as out-of-domain rather than out-of-distribution in WIKIDO,
given that both ID and OOD images are extracted from the same source (i.e., Wikipedia).
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been primarily used for pretraining VLMs to achieve good zero-shot performance on downstream
tasks. The smaller datasets are typically created by first crawling images from the internet and
then manually annotating labels, regions and textual descriptions for the images. These include
Flickr30K [11], MSCOCO [12] and Visual Genome [13]. Flickr30K and MSCOCO consist of images
of everyday activities, most commonly used as evaluation benchmarks for cross-modal retrieval.

Domain generalization datasets. Existing domain generalization benchmarks such as Office-Home
[14], PACS [15], and VLCS [16] are predominantly focused on image classification and are not
multimodal. A recent effort to extend the task of domain generalization to image-text tasks is Domain
Generalization for Image Captioning (DGIC) [17]. DGIC collates popular existing datasets from
five domains: common domain sourced from MSCOCO, assistive domain sourced from Vizwiz [18],
social domain sourced from Flickr30k, avian domain sourced from CUB-200 [19], and floral domain
sourced from Oxford102 [20]. While datasets like MSCOCO, Vizwiz, and Flickr30k represent
common objects from daily life and are easier domains for VLMs, the avian and floral domains
are significantly more challenging. Prior work [17, 21, 22] using any of Flickr30k, MSCOCO, and
Vizwiz as test domains show good generalization performance since these datasets contain images
of generic objects that appear commonly across datasets. We aim for WIKIDO to serve as a more
challenging benchmark to evaluate the generalization abilities of VLMs.

Vision-language models. VLMs are broadly focused on tasks related to cross-modal understanding
and cross-modal generation. A critical component of understanding is aligning the visual and textual
features. Models like CLIP [3] and ALIGN [23] use a dual-encoder model to individually extract
features and align them through a global contrastive loss. UNITER [24] utilizes a multimodal encoder
to extract visual and textual characteristics jointly. ALBEF [25] introduced image-text matching
and masked language modelling to align the image-text representations. FILIP [26] works at the
granularity of image patches and textual words to further refine the alignment. BLIP [1] introduces a
new vision-language pretraining framework with both vision-language understanding (image-text
contrastive loss and image-text matching loss) and generation objectives (language modelling loss).
Similar to BLIP, BLIP-2 [2] also uses both kinds of objectives but bootstraps vision-language pre-
training from off-the-shelf pre-trained image encoders and large language models as textual encoders.
BLIP-2 introduced a lightweight Querying Transformer, which is trained in two stages to bridge the
modality gap. The first stage uses a frozen vision encoder for vision-language representation learning.
The second stage bootstraps vision-to-language generative learning from a frozen language model.
We evaluate all these three VLMs, CLIP, BLIP and BLIP-2, on WIKIDO.

3 WIKIDO: A New Evaluation Benchmark

We present WIKIDO, a new image-text retrieval dataset for the improved evaluation of VLMs for
OOD generalization. We will first describe the source of the dataset (§3.1), followed by details about
the data curation process and how the final data splits were obtained (§3.2).

3.1 Source of WIKIDO

WIKIDO is derived from the Wikipedia Diversity Observatory3 (WDO). WDO consists of data,
visualizations and tools to analyze and bridge the gap in content in Wikipedia, based on the current
state of diversity across Wikipedia articles. This diversity is assessed based on a few specific
categories: geographical location, gender, sexual orientation, ethnic groups, religious groups and
topical coverage. We chose English articles from the topical coverage category to create the WIKIDO
dataset, since this was most extensive in terms of coverage across topics. The Wikipedia articles
in this category are labelled with one of the following topics: Earth, Monuments and Buildings,
GLAM (Galleries, Libraries, Archives and Museums), Folk, Food, Books, Paintings, Clothing and
Fashion, Sports and Teams, Music Creations and Organizations, and People. This categorization of
articles into topics also aids the construction of ID and OOD test sets in WIKIDO. Other diversity
axes also offer potential for creating multimodal benchmarks to evaluate visual language models.
By tagging and categorizing data across dimensions such as geography, gender, sexual orientation,
ethnicity, religion, and topics, researchers can assess cultural biases and generalization capabilities in

3https://wdo.wmcloud.org/
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multimodal contexts for both monolingual and multilingual settings.

3.2 Details of Data Curation

Table 1: Dataset schema

Key Description

image_path path of the image
image_id Wiki ID of the image
orig_cap Reference text from Wikipedia
image Unique image ID given in the dataset
page_id Wiki ID of the page from which the im-

age was extracted
page_title Title of the wikipedia article from which

the image was extracted
topic Topic label from Wikipedia Diversity

Observatory
caption Caption obtained by passing orig_cap

through LLava (for test, val sets also hu-
man verified)

The data from WDO contains meta-information about
an article and the corresponding topic label. We find
all Wikipedia pages from Wikipedia dumps [27] and
extract the URLs of the images from the articles. The
topic label associated with the page is assumed to be
the topic label for all the images in the page. For each
image, we extracted metadata like the page URL,
page title, height, width, and three different types of
text associated with the image. These are: 1. Refer-
ence description: The caption that is visible on the
Wikipedia page just below the image. 2. Attribution:
Text appearing on the Wikimedia page of the im-
age. 3. Alt-text description: Text used by accessibil-
ity/screen readers when the image is not visible. This
crawled dataset consists of 2.7M image-text pairs out
of which 1.2M are unique images. Based on the data
pipeline adopted by WIT [8], we used the following
filtering steps:

1. We only retained images that have a research-permissive license such as Creative Commons;
the text of Wikipedia is licensed under a CC-BY-SA license.

2. We only retained images that have reference descriptions. These textual descriptions were
used as image captions. Reference texts are contextual, and therefore, instead of describing
the image, they provide additional information about the context of the image. This property
makes this dataset more appropriate for the task of cross-modal retrieval, rather than caption
generation. Only those texts were retained that were at least of length three.

3. Only jpg and png images with a height and width of more than 150 pixels were retained.

4. Certain image-text pairs were repeated frequently. These were de-duplicated to retain only
single instances. We also removed generic image-text pairs such as flags, maps, logos, etc.

Figure 2: Top: Proportion of POS tags in
original captions and those retained in the en-
hanced captions. Bottom: Average repetition
count of retained POS-word pairs in the orig-
inal and enhanced captions. ∗ denotes that
the repetition count of determiners is scaled
down by a factor of 1000 for visualization.

Caption enhancement. The final filtered dataset
consists of 384K unique image-text pairs, each la-
belled with a topic label. The distribution across top-
ics is shown in Figure 1. Reference texts in WIKIDO
tend to either be descriptive with domain-specific ter-
minology or very concise and non-descriptive. In
order to maintain a balance between the original ref-
erence texts and more detailed textual descriptions
of the image, we passed the original text through
the visual instruction-tuned model LLaVA [28]. For
each instance, we provided LLaVA with the image
and the reference text and prompted it to provide a
concise caption describing the image without miss-
ing any information from the reference text. The
prompt template and some examples are provided
in the appendix A.2. To analyze how the LLaVA-
enhanced captions differ from the original reference
texts, we use a Part-of-Speech (POS) tagger [29] to
compute POS tags for every word. Figure 2 shows
the POS tag distributions for both original and en-
hanced captions. While there is a loss of unique POS-
word pairs after enhancement, the retained POS-word
pairs tend to repeat at a much higher rate in the en-

4



hanced captions compared to the original captions.
While retained proper nouns do not often repeat in
enhanced and original captions, common nouns, ad-

jectives, verbs, and determiners tend to repeat a lot in enhanced captions. This may be due to the
replacement/paraphrasing of specific proper nouns and nouns with more general nouns. Qualitative
examples of the most frequently occurring nouns in original and enhanced captions are given in the
appendix A.2.

Figure 3: T-SNE plot for embeddings of 1000 ran-
dom images and texts per topic with perplexity 32

Measuring the domain gap. The final
WIKIDO dataset we use in all our experiments
uses LLaVA-enhanced captions. To create train-
val-test splits, we identified a subset of topics
that were semantically different from the rest,
both visually and linguistically. We randomly
sampled 1000 instances from each topic and
passed the instances through CLIP (ViT-L) to
get embeddings. Figure 3 shows the t-SNE plots
for both image and text embeddings. Although
most topics in the dataset overlap in the repre-
sentation space, paintings, medicine and food
(shown in blue) are fairly well-separated in both
image and text space. We further validate this
quantitatively by measuring the domain gap using Maximum Mean Discrepancy (MMD) [17]. We
observe that food, medicine and paintings differ linguistically from the other topics. MMD for
visual embeddings show that earth, food and medicine are the most distant topics. The appendix A.3
provides implementation details and results for MMD.

Data splits. Based on the t-SNE plots and MMD analysis, we chose the topics food, paintings and
medicine to appear in the OOD test set. The remaining topics are included in the train, validation and
in-domain test sets. To further sample a smaller evaluation set of size 3K (comparable to existing test
set sizes in MSCOCO and Flickr) from all the samples across the OOD topics, we use the following
strategy. We find the image-image similarity and text-text similarity between each OOD instance and
all instances of the train set. Then, we pick the top-k similarity scores for each instance of the text
and image modalities. If the average of each top-k for each modality crosses a certain threshold, we
discard those samples from the OOD test set. Therefore, we only retain those samples in the OOD
test set that are highly dissimilar from the train set w.r.t. both image and text modalities.

To mimic the original data distribution, we randomly sample 1000 and 3000 instances from the train
set instances to create validation and in-domain (ID) test splits. 354K samples remain in the train set
after creating the validation and test splits. As the distribution of topics is highly skewed towards a
few topics, we created three different kinds of train splits – a balanced train set consisting of almost
equal number of samples from each topic amounting to a total of 100K instances. Henceforth, this
set will be referred to as the train set unless mentioned otherwise. Similarly, a balanced training set is
created using 200K samples and finally, the training set containing all 354K samples.

Figure 4: Percentage of instances that were marked
as Correct (no hallucination), Hallucinated, and
Wrong (caption and image do not match).

Human verification. Since the reference texts
were enhanced using LLaVA and could result
in hallucinations, we revised the validation, ID,
OOD test set captions via a human verification
pass. For each image, the evaluator was specifi-
cally asked, "Is there any made-up/ hallucinated
content in the caption that is not supported by
the image/reference text?" with an option to an-
swer with a "Yes" or "No". If they answer "Yes",
then the evaluator was asked to correct the refer-
ence text by mainly removing the hallucinations
in the enhanced captions. Figure 4 shows that
the percentage of instances marked as having
hallucinations is comparatively much smaller
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Table 3: Comparison of state-of-the-art VLMs. Z denotes zero-shot and W denotes model fine-tuned
on 100K split of WIKIDO dataset. Number of parameters are listed alongside model names.

Model
WIKIDO ID Test set (3K) (N=128) WIKIDO OOD Test set (3K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

BLIP (ViT-B)-223M
Z 58.8 81.0 87.7 63.8 82.9 88.7 55.1 73.2 79.4 58.7 76.1 81.6
W 73.2 90.8 94.6 73.4 89.7 93.9 62.3 79.6 84.3 62.8 80.0 85.2

BLIP (ViT-L)-446M
Z 61.6 83.5 89.7 65.8 85.4 91.1 58.9 76.4 82.6 62.1 79.0 83.9
W 72.6 90.8 94.6 73.7 90.3 94.2 63.6 80.8 86.1 65.9 81.8 86.9

CLIP (ViT-L)-428M
Z 72.9 88.8 93.1 69.5 87.2 91.6 68.2 85.8 90.3 66.3 84.3 88.9
W 82.8 95.0 97.4 81.5 94.4 96.7 73.4 87.7 91.8 72.9 88.3 91.9

BLIP-2 (ViT-L)-473M
Z 70.3 87.8 91.8 74.1 89.3 93.2 66.4 82.2 86.9 70.4 84.9 88.6
W 82.1 94.0 96.4 82.5 94.3 96.7 72.1 85.9 90.3 73.6 87.1 90.3

BLIP-2 (ViT-G)-1172M
Z 70.8 89.1 93.1 75.3 90.6 94.1 66.1 81.4 86.2 69.3 84.7 88.3
W 79.4 93.3 96.2 80.0 93.3 96.1 70.5 84.3 88.2 72.0 85.9 89.2

than correct captions across all splits. Almost all edits done by human raters to the hallucinated
captions are "deletion" edits to remove hallucinations. Please refer to the appendix A.4 for more
details on edits made by the human raters.

4 Experiments and Results

We benchmark the performance of pretrained CLIP, BLIP, and BLIP-2 models on WIKIDO,
MSCOCO and Flickr. We show zero-shot performance and the effect of finetuning with differ-
ent objectives using these pretrained models on all three datasets.

4.1 Experimental Setup

Table 2: Hyperparameter settings

BLIP BLIP-2 CLIP
ViT-L (ViT-B) ViT-L (ViT-G)

Batch size 256 224 256
Queue size 57600 57600 -
Pixel Res. 256 256 336
Optimizer AdamW AdamW Adam
lr 5e−6(1e−5) 5e−6(1e−5) 1e−6

Decay 0.05 0.05 1e−3

β1, β2 0.9, 0.999 0.9, 0.98 (0.9,
0.999)

0.9,
0.98

We use the standard train, validation and test
sets introduced in MSCOCO [12] and Flickr
[11]. For WIKIDO, we use the splits introduced
in Section 3.2. To finetune BLIP and BLIP-
2, we follow the official code published by the
authors. To finetune CLIP, we use LAVIS code-
base4. We use two variants of BLIP (ViT-L, ViT-
B) and BLIP-2 (ViT-L, ViT-G) as well as CLIP
(ViT-L/14@336px). All models are trained for 6
epochs on 4 A100 80GB Nvidia GPUs. We used
a cosine learning rate scheduler. Hyperparame-
ter settings are given in Table 2. A description
of the model variants and their pretraining ob-
jectives can be found in Appendix B.1. Unlike
CLIP, both BLIP and BLIP-2 use a re-ranking strategy for evaluation. For instance, in the re-ranking
strategy, we first select the top N captions (N = 128 for all experiments) for a given image using
ITC (image-text contrastive) scores, i.e., cosine similarity scores. Then, we compute ITM (image-text
matching) scores between the image and each of these N texts. The final scores used for ranking are
obtained by adding both ITC and ITM scores. For CLIP, we only use cosine similarity (ITC scores)
between the image and text for ranking. Conversely, the same applies to text-to-image retrieval. All
evaluations use the Recall@k (R@k, k= 1, 5, 10) metric.

4https://github.com/salesforce/LAVIS
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Table 4: Overview of results for the current way of showing OOD generalization. Z denotes zero-shot,
C denotes model fine-tuned on MSCOCO, and F denotes model fine-tuned on Flickr.

Model
COCO Test set (5K) (N=128) Flickr Test set (5K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP (ViT-L)-428M
Z 57.5 80.7 87.8 36.6 60.9 71.0 86.6 98.0 99.1 67.2 88.9 93.4
C 75.4 92.8 96.2 58.6 82.2 89.3 94.5 99.7 99.7 83.1 96.9 98.5
F 68.9 87.6 92.7 51.8 75.8 84.0 95.5 99.5 99.9 85.0 97.7 98.9

BLIP-2 (ViT-L)-473M
Z 78.9 93.9 96.9 62.4 84.1 90.2 95.3 99.7 100.0 85.2 96.9 98.3
C 83.2 95.9 98.0 66.1 86.6 91.8 97.1 100.0 100.0 88.3 98.0 98.9
F 80.7 94.7 97.5 64.4 85.4 91.1 97.0 100.0 100.0 89.9 98.4 99.2

4.2 Results and Analysis

Zero-shot. Models BLIP and BLIP-2 perform better on ID than OOD by 3-7% across all R@K.
CLIP, on the other hand, performs almost similarly on both ID and OOD (≈1% gap), suggesting better
domain coverage during pretraining. Zero-shot performance of CLIP and BLIP-2 is significantly
higher than that of BLIP. This could be attributed to the larger training data of CLIP compared to
BLIP (>3x). Despite BLIP and BLIP-2 being trained using the same dataset, BLIP-2 utilizes a frozen
CLIP image encoder, potentially helping to gain further improvement on CLIP, as seen in Table 3.
It is interesting that BLIP-2 performs much better on text-to-image retrieval (≈5% for R@1 and
≈2% for R@10 improvement) compared to CLIP. This could be due to the caption-generation-based
pretraining objective used in BLIP-2.

Finetuning. We use the 100K balanced train set to finetune all models and evaluate on WIKIDO ID
and OOD test sets; these numbers are denoted as W in Table 3. The gap between ID and OOD sets
have significantly grown from 3-7% in the zero-shot setting to 9-11% across all R@K. All models
show >8% improvement for R@1 on the ID set, and the majority of models have >=5% improvement
for most R@K (BLIP-2 being slightly behind, possibly due to stronger zero-shot). For OOD, R@K
for the majority of models are under 5%, and none of them are above 10%. Vision backbones of
BLIP (ViT-L), BLIP-2 (ViT-L), and BLIP-2 (ViT-G) have the same architecture as CLIP but differ in
pretraining data. BLIP-2 (ViT-L) benefits from pretrained CLIP ViT-L as a robust vision encoder as
compared to BLIP-2 (ViT-G), which uses Eva-CLIP [30] as the backbone.

MSCOCO & Flickr. Here, we establish that fine-tuning VLMs on MSCOCO and testing on Flickr
is not a reliable test for OOD generalization. Table 4 shows finetuning on MSCOCO significantly
improves Flickr performance. CLIP’s zero-shot performance is lower than that of the BLIP model
as the latter has already seen image-caption pairs similar to those of MSCOCO during pretraining.
For BLIP, finetuning on MSCOCO and testing on Flickr is almost the same as finetuning on Flickr.
Similarly, finetuning on Flickr significantly boosts zero-shot MSCOCO. Such improvements suggest
that both datasets significantly overlap, making MSCOCO-Flickr a not-so-strong pair for testing
generalization. A full comparison of all models is provided in Appendix B.2.

Table 5: Effect of scaling the ID data on OOD generalization using BLIP (ViT-L).

# samples
WIKIDO ID Test set (3K) (N=128) WIKIDO OOD Test set (3K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

100K 72.6 90.8 94.6 73.7 90.3 94.2 63.6 80.8 86.1 65.9 81.8 86.9
200K 74.1 91.4 95.4 75.4 91.1 94.9 64.4 81.1 86.1 66.5 82.1 86.7
354K 76.2 92.2 96.0 76.5 92.2 95.6 64.3 80.8 86.1 66.6 82.1 86.7

Effect of scaling ID data. To find out whether the performance gap between the ID and OOD test
sets can be abridged by adding more data from the ID, we train BLIP with 200K and 354K image-text
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Table 6: Performance of models trained on different finetuning objectives trained on 100K split.
ViT-L backbone is used for both BLIP and BLIP-2.

Loss Model
WIKIDO ID Test set (3K) (N=128) WIKIDO OOD Test set (3K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ITC CLIP 82.8 95.0 97.4 81.5 94.4 96.7 73.4 87.7 91.8 72.9 88.3 91.9
BLIP 68.9 88.3 93.0 69.0 88.4 93.1 59.6 77.5 83.4 60.4 78.1 83.7
BLIP-2 74.4 92.9 95.7 75.6 92.3 95.7 61.2 80.1 85.6 62.5 82.0 87.6

ITC+ITM BLIP 72.6 90.8 94.6 73.7 90.3 94.2 63.6 80.8 86.1 65.9 81.8 86.9
BLIP-2 80.4 93.2 96.3 80.6 93.3 95.6 70.9 85.4 89.5 73.3 86.7 90.2

ITC+ITM+ITG BLIP-2 82.1 94.0 96.4 82.5 94.3 96.7 72.1 85.9 90.3 73.6 87.1 90.3

pairs. The results in Table 5 show minimal improvements in OOD, suggesting that scaling ID data
is insufficient to close the performance gap. In addition, the distribution of the largest train set is
heavily biased towards only a few domains, indicating the need for more diverse data during training.

Ablations on finetuning objectives. All three models were trained with different pre-training
objectives (described in Section 2). Table 6 shows the results of using different losses during fine-
tuning. All models are of comparable size. Even without the use of additional objectives, CLIP proves
to be very robust. In BLIP-2, the addition of ITM as an additional fine-tuning objective results in the
largest R@1 improvement of ≈ 5-6%, and ITG slightly improves performance. The performance
improvement for BLIP by adding ITM is limited to approximately ≈ 3-4%.

5 Discussion and Limitations

Figure 5: TSNE of 100 object clusters. Blue shows OOD
objects, and green denotes objects from ID images.

To understand why there is any im-
provement on the OOD test set when
fine-tuned on the ID data, we first use
a parser [29] to extract noun phrases
from all sentences. Next, we use
Grounding-DINO [31] to detect ob-
ject boxes from the corresponding im-
age and label each box with the corre-
sponding noun chunk if they semanti-
cally represent the same thing. We rec-
ognize roughly 1M image boxes with
the corresponding noun chunks in the
text. We pass these image boxes to
DINOv2 [32] to extract the image fea-
tures. After applying K-means cluster-
ing to these embeddings with K=100,
we obtain 100 meaningful clusters. To
visualize this, we select 1000 boxes
per cluster that are closest to the cen-
troid. Figure 5 shows these object
clusters with the difference between
the objects present in OOD compared
to ID. While there are a few clearly
separated clusters for OOD objects,
there are clusters that contain both ob-
jects in OOD and ID instances. This
object overlap explains the gains in
R@K for OOD after fine-tuning. While our work presents a carefully constructed test bed for OOD
evaluation of VLMs, it is important to acknowledge several limitations:
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Limited Scope of Image-Text Retrieval. Our primary focus has been on image-text retrieval.
Although this approach can be extended to other tasks, such as generation and contextual understand-
ing, our current evaluation framework does not cover these tasks. Since the data is extracted from
Wikipedia along with the meta-data like page ID and title, it can be used for tasks like contextual
image-captioning [33], image-suggestion and image-promotion [34].

Use of Topics Axis Only. In WIKIDO, we have primarily explored diversity only through the lens
of topical content. There are numerous other diversity axes, such as cultural context, ethnicity, gender
and religion, etc. that could provide a more robust and diverse evaluation framework. Additionally,
our data is currently limited to English despite the availability of similar data in multiple languages.
Expanding our evaluation to include multilingual datasets would help evaluate multilingual VLMs.

Lack of Manual Verification for Enhanced Training Set. The enhanced training set captions,
due to their large size, have not been manually verified. While our test and validation sets indicate
that the quality of the enhanced captions is high, the absence of manual verification could mean that
some errors remain in the training data.

6 Conclusion

In this work, we introduced WIKIDO, a novel benchmark specifically designed to evaluate the out-
of-distribution (OOD) generalization capabilities of vision-language models (VLMs) in the context
of cross-modal retrieval. Unlike existing benchmarks, WIKIDO draws from the diverse content of
Wikipedia, providing a robust dataset that includes 384K image-text pairs categorized by domain.
Our benchmark includes both in-distribution (ID) and OOD test sets, each comprising 3K carefully
curated and human-verified pairs, allowing for a comprehensive assessment of model performance
across a wide range of topics. Our evaluations of various state-of-the-art VLMs, such as CLIP and
BLIP-2, on the WIKIDO benchmark revealed insights into their OOD generalization capabilities.
While BLIP-2 demonstrated superior zero-shot performance with R@1≈ 66% on the OOD test set,
this was notably lower compared to its performance on traditional benchmarks like MSCOCO and
Flickr. Moreover, fine-tuning on WIKIDO yielded a relatively modest improvement of approximately
≈5% on OOD instances, suggesting inherent challenges in achieving robust OOD generalization.
These findings underscore the limitations of current VLMs in handling truly OOD data. WIKIDO
thus serves as an effective testbed to help develop, evaluate and guide future VLMs towards superior
generalization capabilities.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 3.2 and Section 4 to validate the dataset
contribution and experimental claims.

(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We present

data scraped from Wikipedia with open licenses to evaluate current vision-language
models. Our data is objectively limited to domains and does not reflect any societal
elements.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not
present any theoretical results in the paper

(b) Did you include complete proofs of all theoretical results? [N/A] We do not present
any theoretical results in the paper

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Section 4.1
has details of codebases and datasets used. Section 1 contains the URL for proposed
dataset and code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Section 4.1 has detailed explanation of training setting and Table 2
has hyperparameter details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Due to compute limitations, we have ran experiment with
multiple seed only for the best model. Results can be found in supplementary.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Section 4.1 has details of the
amount of compute used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Section 2 contains
the details of all models and data used.

(b) Did you mention the license of the assets? [Yes] Section 3.2 contains the license of the
assets used.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Section 1 has the URL for all the assets created.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We are using publicly available data at https://wdo.wmcloud.
org/. Details are provided in the supplementary material.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Details are provided in the supplementary
material.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] Used human annotators to help with caption enhancement. Annotator
guidelines are mentioned in the supplementary material.
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No potential participant risks, as research
is not based around human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Yes, human annotators were paid. Details of
compensation is mentioned in the supplementary material.

A Dataset Details

A.1 Sub topic distribution

Each topic comprises of many subtopics. Figure 6 shows a distribution of these subtopics.

Figure 6: Pie-plot of subtopics in the dataset. Only a few subtopics are labelled to avoid clutter. Each
color in the plot denotes a different subtopic.

A.2 Caption enhancement

Here is the prompt template for LLava.

<Image> Wikipedia caption: <Caption>
Given the image and the wikipedia caption above, give an exact and concise caption.
Do not miss any information from the wikipedia caption.

Some examples of original and enhanced captions are given in Table 8.

Most frequently occurring noun phrases in both original and enhanced captions are given in Table 7.

A.3 MMD

The MMD distance between domains DS and DT can be measured according to the following
equation:

MMD(DS , D̂T ) =
∥∥EX∼DS [φ(X)]− EY∼D̂T [φ(Y )]

∥∥
H (1)

=
1

n2
s

ns∑
i=1

ns∑
j=1

k(xi, xj) +
1

n2
t

nt∑
i=1

nt∑
j=1

k(yi, yj)−
2

nsnt

ns∑
i=1

nt∑
j=1

k(xi, yj) (2)

where k represents the RBF kernel and ns, nt represent the sample sizes in the source and target
domains. For visual representations, we use pretrained ResNet-101 [35] to extract final 2048-D
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Table 7: Most frequently occurring noun phrases in original and enhanced captions.

Original Enhanced Original Enhanced
Proper
noun

freq. Proper
noun

freq. Common
noun

freq. Common
noun

freq.

st 7390 st 5253 view 16582 building 83017
street 6687 park 4279 station 12932 front 38729
park 6070 museum 4268 building 7086 people 35632
house 5907 new 4196 entrance 7008 man 35472
museum 5835 school 4069 church 4057 train 26638
church 5528 house 4024 century 3772 view 26415
new 4666 street 3891 side 3520 group 24159
hall 4641 church 3747 c 3511 sign 23713
school 4473 hall 3386 right 3398 image 23262
us 4357 national 3039 bridge 3349 background 23221
de 4330 de 3008 train 3339 photo 20967
bridge 4070 island 2763 part 3297 street 19211
lake 3939 city 2655 line 3149 station 17741
national 3879 lake 2601 tower 3062 painting 17497
station 3790 river 2453 background 2994 stone 16995
island 3779 john 2434 construction 2987 brick 16812
road 3651 station 2416 image 2978 tower 16508
river 3267 us 2397 site 2903 woman 16065
castle 3197 bridge 2385 end 2739 side 15880
city 3176 north 2330 railway 2635 scene 15390

Figure 7: Average edit distance between human-corrected and hallucinated captions is shown. The
contribution of various edit types is shown.

embeddings {vi, vj} for images in each pair of datasets {DS , D̂T }. For the semantic representation
of the captions, we choose pre-trained BERT [36] to encode captions {qi, qj} from pairwise datasets
{DS , D̂T }.

A.4 Human Verification

Since the task of human verification is to label is caption as hallucinated or not and remove any
hallucinations from the incorrect captions, we expect most edits done by humans are deletions. This
is validated by finding the Edit distance between the enhanced caption and the human-verified caption.
Figure 7 summarizes different types of edits and shows the edit distance.
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Table 8: Examples of original and enhanced version of captions

Original Caption Enhanced Caption Image
Rakuten Kitazawa created
the first modern Japanese
comic strip. (Tagosaku to
Mokube no T0̆14dky0̆14d
Kenbutsu,[f] 1902)

A comic strip by Rakuten Ki-
tazawa depicts a man being
attacked by a snake.

Highest peak, Mogielica (top
centre)

A mountain range with the
highest peak being Mogiel-
ica.

Ceremonial bag of the
Fr0̆0edas culture

A ceremonial bag from the
Frías culture is displayed in
a glass case.

The Model A Ford Museum The Model A Ford Museum
is a large brick building with
a blue flag on top. The build-
ing is surrounded by a park-
ing lot and has a sign out
front.

B Experiments

B.1 Models

CLIP We use CLIP with Vision Transformer ViT/14 with pixel resolution 336px (ViT/14@336px).
This is the best model reported by the authors of CLIP. CLIP is trained on 400 million image-text
pairs collected from publicly available sources on the Internet. CLIP is pretrained with contrastive
learning objective (ITC) in a shared image-text space with large data making it robust to unseen
domains.

BLIP introduces a unified vision-language pretraining method which jointly optimizes three
objectives: image-text contrastive learning (ITC), image-text matching (ITM), and image-conditioned
language modeling. BLIP is trained with 129M images, including MSCOCO, Visual Genome,
CC3M, CC12M, SBU, and 115M images from the LAION-400M dataset. We perform experiment
on different image encoders i.e BLIP with ViT-B and ViT-L.
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Table 9: Measuring the topic gaps with MMD. Red is linguistic domain gaps over 2048-D ResNet
embeddings, and green is visual domain gaps over 768-D BERT embeddings. Following is the order
of topics: food (1), medicine (2), industry (3), sport and teams (4), paintings (5), religion (6), folk (7),
books (8), glam (9), music creations and organizations (10), clothing and fashion (11), monuments
and buildings (12), earth (13).

1 2 3 4 5 6 7 8 9 10 11 12 13

1 - 0.02 0.05 0.06 0.07 0.05 0.05 0.04 0.05 0.08 0.04 0.06 0.07
2 0.03 - 0.04 0.04 0.04 0.03 0.03 0.01 0.04 0.04 0.02 0.05 0.06
3 0.02 0.03 - 0.03 0.06 0.03 0.02 0.04 0.01 0.05 0.04 0.01 0.05
4 0.03 0.03 0.01 - 0.04 0.03 0.02 0.04 0.03 0.03 0.02 0.04 0.06
5 0.05 0.04 0.04 0.04 - 0.02 0.02 0.03 0.04 0.03 0.03 0.05 0.07
6 0.03 0.03 0.02 0.02 0.02 - 0.01 0.02 0.01 0.04 0.02 0.02 0.05
7 0.03 0.02 0.01 0.01 0.03 0.01 - 0.03 0.02 0.02 0.02 0.02 0.05
8 0.02 0.02 0.01 0.02 0.02 0.01 0.01 - 0.03 0.04 0.02 0.04 0.06
9 0.03 0.03 0.01 0.02 0.03 0.01 0.01 0.01 - 0.05 0.04 0.01 0.04

10 0.03 0.03 0.02 0.01 0.04 0.02 0.01 0.02 0.02 - 0.03 0.06 0.09
11 0.02 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.02 0.01 - 0.05 0.08
12 0.02 0.03 0.01 0.02 0.03 0.01 0.01 0.01 0.0 0.02 0.02 - 0.03
13 0.02 0.03 0.01 0.02 0.04 0.02 0.02 0.01 0.01 0.02 0.02 0.01 -

Table 10: Another table to empirically show coco flickr are not great for OOD generalization: zhsot,
coco finetuned, flickr finetuned for MSCOCO and Flickr splits

Model
COCO Test set (5k) (K=128) Flickr Test set (5k) (K=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

BLIP (ViT-B)-223M
Z 70.6 90.2 94.4 56.4 80.4 87.4 87.2 98.0 99.1 78.2 94.1 96.9
C 81.9 95.2 97.6 64.3 85.7 91.5 96.0 99.9 100.0 85.0 96.8 98.6
F 77.9 93.3 96.6 61.3 83.7 89.9 97.2 99.9 100.0 87.3 97.6 99.0

BLIP (ViT-L)-446M
Z 73.7 91.6 95.6 58.2 81.7 88.7 89.9 98.8 99.7 80.4 94.9 97.1
C 82.3 95.3 97.9 65.1 86.3 91.9 96.7 100.0 100.0 86.7 97.3 98.7
F 78.9 93.7 97.1 62.7 84.7 90.6 97.4 99.8 99.9 87.6 97.7 99.0

CLIP (ViT-L)-428M
Z 57.5 80.7 87.8 36.6 60.9 71.0 86.6 98.0 99.1 67.2 88.9 93.4
C 75.4 92.8 96.2 58.6 82.2 89.3 94.5 99.7 99.7 83.1 96.9 98.5
F 68.9 87.6 92.7 51.8 75.8 84.0 95.5 99.5 99.9 85.0 97.7 98.9

BLIP-2 (ViT-L)-473M
Z 78.9 93.9 96.9 62.4 84.1 90.2 95.3 99.7 100.0 85.2 96.9 98.3
C 83.2 95.9 98.0 66.1 86.6 91.8 97.1 100.0 100.0 88.3 98.0 98.9
F 80.7 94.7 97.5 64.4 85.4 91.1 97.0 100.0 100.0 89.9 98.4 99.2

BLIP-2 (ViT-G)-1172M
Z 81.1 95.1 97.6 64.5 85.1 90.7 94.8 99.8 99.9 86.4 97.1 98.5
C 83.9 96.5 98.2 67.0 86.8 92.0 96.7 99.9 100.0 87.2 97.3 98.7
F 82.5 95.8 98.0 65.9 85.9 91.5 97.7 100.0 100.0 89.5 98.2 99.2

BLIP-2 bridges the modality gap of existing pretrained frozen image and text encoders using a
lightweight Querying Transformer (Q-Former) which uses learnt prompt queries and a BERT-based
text encoder. BLIP-2 is trained with same data and same training objectives as BLIP. Similar to BLIP,
we experiment with two BLIP-2 model variants: ViT-L and ViT-G. ViT-L is pretrained CLIP ViT-L
and ViT-G is pretrained Eva-CLIP ViT-G. ViT-L and ViT-G are trained on different but similar sized
(400M image-text pairs) datasets (CLIP-400M vs LAION-400M).

B.2 Flickr-COCO

We finetune all models MSCOCO and test on Flickr to see the impact of OOD generalization.
Conversely, we also finetune with Flickr and test on MSCOCO. It is empirically evident MSCOCO and
Flickr benefit from each other. For all models, finetuning dataset helps the test dataset significantly. In
fact, either finetuning with MSCOCO or Flickr gives almost equal gains in Flickr Test set performance,
suggesting overlap between MSCOCO and Flickr.
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