Decompose, Analyze and Rethink: Solving Intricate Problems with Human-like Reasoning Cycle

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, Qi Liu

Abstract

In this paper, we introduce DeAR (Decompose-Analyze-Rethink), a framework that iteratively builds a reasoning tree to tackle intricate problems within a single large language model (LLM). Unlike approaches that extend or search for rationales, DeAR is featured by 1) adopting a tree-based question decomposition manner to plan the organization of rationales, which mimics the logical planning inherentin human cognition; 2) globally updating the rationales at each reasoning step through natural language feedback. Specifically, the Decompose stage decomposes the question into simpler sub-questions, storing them as new nodes; the Analyze stage generates and self-checks rationales for sub-questions at each node evel; and the Rethink stage updates parent-node rationales based on feedback from their child nodes. By generating and updating the reasoning process from a more global perspective, DeAR constructs more adaptive and accurate logical structures for complex problems, facilitating timely error correction compared to rationale-extension and search-based approaches such as Tree-of-Thoughts (ToT) and Graph-of-Thoughts (GoT). We conduct extensive experiments on three reasoning benchmarks, including ScienceQA, StrategyQA, and GSM8K, which cover a variety of reasoning tasks, demonstrating that our approach significantly reduces logical errors and enhances performance across various LLMs. Furthermore, we validate that DeAR is an efficient method that achieves a superior trade-off between accuracy and reasoning time compared to ToT and GoT.