Federated Ensemble-Directed Offline Reinforcement Learning

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Desik Rengarajan, Nitin Ragothaman, Dileep Kalathil, Srinivas Shakkottai

Abstract

We consider the problem of federated offline reinforcement learning (RL), a scenario under which distributed learning agents must collaboratively learn a high-quality control policy only using small pre-collected datasets generated according to different unknown behavior policies. Na\"{i}vely combining a standard offline RL approach with a standard federated learning approach to solve this problem can lead to poorly performing policies. In response, we develop the Federated Ensemble-Directed Offline Reinforcement Learning Algorithm (FEDORA), which distills the collective wisdom of the clients using an ensemble learning approach. We develop the FEDORA codebase to utilize distributed compute resources on a federated learning platform. We show that FEDORA significantly outperforms other approaches, including offline RL over the combined data pool, in various complex continuous control environments and real-world datasets. Finally, we demonstrate the performance of FEDORA in the real-world on a mobile robot. We provide our code and a video of our experiments at \url{https://github.com/DesikRengarajan/FEDORA}.