Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Jiangyuan Li, Jiayi Wang, Raymond K. W. Wong, Kwun Chuen Gary Chan
While several recent matrix completion methods are developed to deal with non-uniform observation probabilities across matrix entries, very few allow the missingness to depend on the mostly unobserved matrix measurements, which is generally ill-posed. We aim to tackle a subclass of these ill-posed settings, characterized by a flexible separable observation probability assumption that can depend on the matrix measurements. We propose a regularized pairwise pseudo-likelihood approach for matrix completion and prove that the proposed estimator can asymptotically recover the low-rank parameter matrix up to an identifiable equivalence class of a constant shift and scaling, at a near-optimal asymptotic convergence rate of the standard well-posed (non-informative missing) setting, while effectively mitigating the impact of informative missingness. The efficacy of our method is validated via numerical experiments, positioning it as a robust tool for matrix completion to mitigate data bias.