Supra-Laplacian Encoding for Transformer on Dynamic Graphs

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Yannis Karmim, Marc Lafon, Raphaël Fournier S'niehotta, Nicolas Thome

Abstract

Fully connected Graph Transformers (GT) have rapidly become prominent in the static graph community as an alternative to Message-Passing models, which suffer from a lack of expressivity, oversquashing, and under-reaching.However, in a dynamic context, by interconnecting all nodes at multiple snapshots with self-attention,GT loose both structural and temporal information. In this work, we introduce Supra-LAplacian encoding for spatio-temporal TransformErs (SLATE), a new spatio-temporal encoding to leverage the GT architecture while keeping spatio-temporal information.Specifically, we transform Discrete Time Dynamic Graphs into multi-layer graphs and take advantage of the spectral properties of their associated supra-Laplacian matrix.Our second contribution explicitly model nodes' pairwise relationships with a cross-attention mechanism, providing an accurate edge representation for dynamic link prediction.SLATE outperforms numerous state-of-the-art methods based on Message-Passing Graph Neural Networks combined with recurrent models (e.g, LSTM), and Dynamic Graph Transformers,on~9 datasets. Code is open-source and available at this link https://github.com/ykrmm/SLATE.