One-to-Multiple: A Progressive Style Transfer Unsupervised Domain-Adaptive Framework for Kidney Tumor Segmentation

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Kai Hu, JinHao Li, Yuan Zhang, Xiongjun Ye, Xieping Gao

Abstract

In multi-sequence Magnetic Resonance Imaging (MRI), the accurate segmentation of the kidney and tumor based on traditional supervised methods typically necessitates detailed annotation for each sequence, which is both time-consuming and labor-intensive. Unsupervised Domain Adaptation (UDA) methods can effectively mitigate inter-domain differences by aligning cross-modal features, thereby reducing the annotation burden. However, most existing UDA methods are limited to one-to-one domain adaptation, which tends to be inefficient and resource-intensive when faced with multi-target domain transfer tasks. To address this challenge, we propose a novel and efficient One-to-Multiple Progressive Style Transfer Unsupervised Domain-Adaptive (PSTUDA) framework for kidney and tumor segmentation in multi-sequence MRI. Specifically, we develop a multi-level style dictionary to explicitly store the style information of each target domain at various stages, which alleviates the burden of a single generator in a multi-target transfer task and enables effective decoupling of content and style. Concurrently, we employ multiple cascading style fusion modules that utilize point-wise instance normalization to progressively recombine content and style features, which enhances cross-modal alignment and structural consistency. Experiments conducted on the private MSKT and public KiTS19 datasets demonstrate the superiority of the proposed PSTUDA over comparative methods in multi-sequence kidney and tumor segmentation. The average Dice Similarity Coefficients are increased by at least 1.8% and 3.9%, respectively. Impressively, our PSTUDA not only significantly reduces the floating-point computation by approximately 72% but also reduces the number of model parameters by about 50%, bringing higher efficiency and feasibility to practical clinical applications.