Pre-trained Large Language Models Use Fourier Features to Compute Addition

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Tianyi Zhou, Deqing Fu, Vatsal Sharan, Robin Jia

Abstract

Pre-trained large language models (LLMs) exhibit impressive mathematical reasoning capabilities, yet how they compute basic arithmetic, such as addition, remains unclear. This paper shows that pre-trained LLMs add numbers using Fourier features---dimensions in the hidden state that represent numbers via a set of features sparse in the frequency domain. Within the model, MLP and attention layers use Fourier features in complementary ways: MLP layers primarily approximate the magnitude of the answer using low-frequency features, while attention layers primarily perform modular addition (e.g., computing whether the answer is even or odd) using high-frequency features.Pre-training is crucial for this mechanism: models trained from scratch to add numbers only exploit low-frequency features, leading to lower accuracy.Introducing pre-trained token embeddings to a randomly initialized model rescues its performance.Overall, our analysis demonstrates that appropriate pre-trained representations (e.g., Fourier features) can unlock the ability of Transformers to learn precise mechanisms for algorithmic tasks.