Cloud Object Detector Adaptation by Integrating Different Source Knowledge

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Shuaifeng Li, Mao Ye, Lihua Zhou, Nianxin Li, Siying Xiao, Song Tang, Xiatian Zhu

Abstract

We propose to explore an interesting and promising problem, Cloud Object Detector Adaptation (CODA), where the target domain leverages detections provided by a large cloud model to build a target detector. Despite with powerful generalization capability, the cloud model still cannot achieve error-free detection in a specific target domain. In this work, we present a novel Cloud Object detector adaptation method by Integrating different source kNowledge (COIN). The key idea is to incorporate a public vision-language model (CLIP) to distill positive knowledge while refining negative knowledge for adaptation by self-promotion gradient direction alignment. To that end, knowledge dissemination, separation, and distillation are carried out successively. Knowledge dissemination combines knowledge from cloud detector and CLIP model to initialize a target detector and a CLIP detector in target domain. By matching CLIP detector with the cloud detector, knowledge separation categorizes detections into three parts: consistent, inconsistent and private detections such that divide-and-conquer strategy can be used for knowledge distillation. Consistent and private detections are directly used to train target detector; while inconsistent detections are fused based on a consistent knowledge generation network, which is trained by aligning the gradient direction of inconsistent detections to that of consistent detections, because it provides a direction toward an optimal target detector. Experiment results demonstrate that the proposed COIN method achieves the state-of-the-art performance.