Scalable DBSCAN with Random Projections

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

HaoChuan Xu, Ninh Pham

Abstract

We present sDBSCAN, a scalable density-based clustering algorithm in high dimensions with cosine distance. sDBSCAN leverages recent advancements in random projections given a significantly large number of random vectors to quickly identify core points and their neighborhoods, the primary hurdle of density-based clustering. Theoretically, sDBSCAN preserves the DBSCAN’s clustering structure under mild conditions with high probability. To facilitate sDBSCAN, we present sOPTICS, a scalable visual tool to guide the parameter setting of sDBSCAN. We also extend sDBSCAN and sOPTICS to L2, L1, χ2, and Jensen-Shannon distances via random kernel features. Empirically, sDBSCAN is significantly faster and provides higher accuracy than competitive DBSCAN variants on real-world million-point data sets. On these data sets, sDBSCAN and sOPTICS run in a few minutes, while the scikit-learn counterparts and other clustering competitors demand several hours orcannot run on our hardware due to memory constraints. Our code is available at https://github.com/NinhPham/sDbscan.