GTBench: Uncovering the Strategic Reasoning Capabilities of LLMs via Game-Theoretic Evaluations

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-Eskin, Mohit Bansal, Tianlong Chen, Kaidi Xu

Abstract

As Large Language Models (LLMs) are integrated into critical real-world applications, their strategic and logical reasoning abilities are increasingly crucial. This paper evaluates LLMs' reasoning abilities in competitive environments through game-theoretic tasks, e.g., board and card games that require pure logic and strategic reasoning to compete with opponents. We first propose GTBench, a language-driven environment composing 10 widely-recognized tasks, across a comprehensive game taxonomy: complete versus incomplete information, dynamic versus static, and probabilistic versus deterministic scenarios. Then, we (1) Characterize the game-theoretic reasoning of LLMs; and (2) Perform LLM-vs.-LLM competitions as reasoning evaluation. We observe that (1) LLMs have distinct behaviors regarding various gaming scenarios; for example, LLMs fail in complete and deterministic games yet they are competitive in probabilistic gaming scenarios; (2) Most open-source LLMs, e.g., CodeLlama-34b-Instruct and Llama-2-70b-chat, are less competitive than commercial LLMs, e.g., GPT-4, in complex games, yet the recently released Llama-3-70b-Instruct makes up for this shortcoming. In addition, code-pretraining greatly benefits strategic reasoning, while advanced reasoning methods such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) do not always help. We further characterize the game-theoretic properties of LLMs, such as equilibrium and Pareto Efficiency in repeated games. Detailed error profiles are provided for a better understanding of LLMs' behavior. We hope our research provides standardized protocols and serves as a foundation to spur further explorations in the strategic reasoning of LLMs.