Probabilistic Conformal Distillation for Enhancing Missing Modality Robustness

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Mengxi Chen, Fei Zhang, Zihua Zhao, Jiangchao Yao, Ya Zhang, Yanfeng Wang

Abstract

Multimodal models trained on modality-complete data are plagued with severe performance degradation when encountering modality-missing data. Prevalent cross-modal knowledge distillation-based methods precisely align the representation of modality-missing data and that of its modality-complete counterpart to enhance robustness. However, due to the irreparable information asymmetry, this determinate alignment is too stringent, easily inducing modality-missing features to capture spurious factors erroneously. In this paper, a novel multimodal Probabilistic Conformal Distillation (PCD) method is proposed, which considers the inherent indeterminacy in this alignment. Given a modality-missing input, our goal is to learn the unknown Probability Density Function (PDF) of the mapped variables in the modality-complete space, rather than relying on the brute-force point alignment. Specifically, PCD models the modality-missing feature as a probabilistic distribution, enabling it to satisfy two characteristics of the PDF. One is the extremes of probabilities of modality-complete feature points on the PDF, and the other is the geometric consistency between the modeled distributions and the peak points of different PDFs. Extensive experiments on a range of benchmark datasets demonstrate the superiority of PCD over state-of-the-art methods. Code is available at: https://github.com/mxchen-mc/PCD.