Barely Random Algorithms and Collective Metrical Task Systems

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Romain Cosson, Laurent Massoulié

Abstract

We consider metrical task systems on general metric spaces with $n$ points, and show that any fully randomized algorithm can be turned into a randomized algorithm that uses only $2\log n$ random bits, and achieves the same competitive ratio up to a factor $2$. This provides the first order-optimal barely random algorithms for metrical task systems, i.e. which use a number of random bits that does not depend on the number of requests addressed to the system. We discuss implications on various aspects of online decision making such as: distributed systems, advice complexity and transaction costs, suggesting broad applicability. We put forward an equivalent view that we call collective metrical task systems where $k$ agents in a metrical task system team up, and suffer the average cost paid by each agent. Our results imply that such team can be $O(\log^2 n)$-competitive as soon as $k\geq n^2$. In comparison, a single agent is always $\Omega(n)$-competitive.