An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Jincheng Cao, Ruichen Jiang, Erfan Yazdandoost Hamedani, Aryan Mokhtari

Abstract

In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria. Specifically, when the feasible set is compact, we show that our method requires at most $\mathcal{O}(\max\\{1/\sqrt{\epsilon_{f}}, 1/\epsilon_g\\})$ iterations to find a solution that is $\epsilon_f$-suboptimal and $\epsilon_g$-infeasible. Moreover, under the additional assumption that the lower-level objective satisfies the $r$-th Hölderian error bound, we show that our method achieves an iteration complexity of $\mathcal{O}(\max\\{\epsilon_{f}^{-\frac{2r-1}{2r}},\epsilon_{g}^{-\frac{2r-1}{2r}}\\})$, which matches the optimal complexity of single-level convex constrained optimization when $r=1$.