Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Jiazuo Yu, Haomiao Xiong, Lu Zhang, Haiwen Diao, Yunzhi Zhuge, Lanqing Hong, Dong Wang, Huchuan Lu, You He, Long Chen
Multimodal Large Language Models (MLLMs) have gained significant attention due to their impressive capabilities in multimodal understanding. However, existing methods rely heavily on extensive modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities. In this paper, we propose \textbf{PathWeave}, a flexible and scalable framework with modal-\textbf{path} s\textbf{w}itching and \textbf{e}xp\textbf{a}nsion abilities that enables MLLMs to continually \textbf{ev}olve on modalities for $\mathbb{X}$-modal reasoning. We leverage the concept of Continual Learning and develop an incremental training strategy atop pre-trained MLLMs, enabling their expansion to new modalities using uni-modal data, without executing joint-modal pretraining. In detail, a novel Adapter-in-Adapter (AnA) framework is introduced, in which uni-modal and cross-modal adapters are seamlessly integrated to facilitate efficient modality alignment and collaboration. Additionally, an MoE-based gating module is applied between two types of adapters to further enhance the multimodal interaction. To investigate the proposed method, we establish a challenging benchmark called \textbf{C}ontinual \textbf{L}earning of \textbf{M}odality (MCL), which consists of high-quality QA data from five distinct modalities: image, video, \textcolor{black}{audio, depth} and point cloud. Extensive experiments demonstrate the effectiveness of the proposed AnA framework on learning plasticity and memory stability during continual learning. Furthermore, PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73\%. Our code locates at \url{https://github.com/JiazuoYu/PathWeave}.