Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Datasets and Benchmarks Track
Kiran Lekkala, Henghui Bao, Peixu Cai, Wei Lim, Chen Liu, Laurent Itti
In this paper, we introduce the \textbf{USCILab3D dataset}, a large-scale, annotated outdoor dataset designed for versatile applications across multiple domains, including computer vision, robotics, and machine learning. The dataset was acquired using a mobile robot equipped with 5 cameras and a 32-beam, $360^{\circ}$ scanning LIDAR. The robot was teleoperated, over the course of a year and under a variety of weather and lighting conditions, through a rich variety of paths within the USC campus (229 acres = $\sim 92.7$ hectares). The raw data was annotated using state-of-the-art large foundation models, and processed to provide multi-view imagery, 3D reconstructions, semantically-annotated images and point clouds (267 semantic categories), and text descriptions of images and objects within. The dataset also offers a diverse array of complex analyses using pose-stamping and trajectory data. In sum, the dataset offers 1.4M point clouds and 10M images ($\sim 6$TB of data). Despite covering a narrower geographical scope compared to a whole-city dataset, our dataset prioritizes intricate intersections along with denser multi-view scene images and semantic point clouds, enabling more precise 3D labelling and facilitating a broader spectrum of 3D vision tasks. For data, code and more details, please visit our website.