Clustering with Non-adaptive Subset Queries

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Hadley Black, Euiwoong Lee, Arya Mazumdar, Barna Saha

Abstract

Recovering the underlying clustering of a set $U$ of $n$ points by asking pair-wise same-cluster queries has garnered significant interest in the last decade. Given a query $S \subset U$, $|S|=2$, the oracle returns "yes" if the points are in the same cluster and "no" otherwise. We study a natural generalization of this problem to subset queries for $|S|>2$, where the oracle returns the number of clusters intersecting $S$. Our aim is to determine the minimum number of queries needed for exactly recovering an arbitrary $k$-clustering. We focus on non-adaptive schemes, where all the queries are asked in one round, thus allowing for the querying process to be parallelized, which is a highly desirable property. For adaptive algorithms with pair-wise queries, the complexity is known to be $\Theta(nk)$, where $k$ is the number of clusters. In contrast, non-adaptive pair-wise query algorithms are extremely limited: even for $k=3$, such algorithms require $\Omega(n^2)$ queries, which matches the trivial $O(n^2)$ upper bound attained by querying every pair of points. Allowing for subset queries of unbounded size, $O(n)$ queries is possible with an adaptive scheme. However, the realm of non-adaptive algorithms remains completely unknown. Is it possible to attain algorithms that are non-adaptive while still making a near-linear number of queries?In this paper, we give the first non-adaptive algorithms for clustering with subset queries. We provide, (i) a non-adaptive algorithm making $O(n \log^2 n \log k)$ queries which improves to $O(n \log k)$ when the cluster sizes are within any constant factor of each other, (ii) for constant $k$, a non-adaptive algorithm making $O(n \log{\log{n}})$ queries. In addition to non-adaptivity, we take into account other practical considerations, such as enforcing a bound on query size. For constant $k$, we give an algorithm making $\smash{\widetilde{O}(n^2/s^2)}$ queries on subsets of size at most $s \leq \sqrt{n}$, which is optimal among all non-adaptive algorithms within a $\log n$-factor. For arbitrary $k$, the dependence varies as $\tilde{O}(n^2/s)$.