QTIP: Quantization with Trellises and Incoherence Processing

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Albert Tseng, Qingyao Sun, David Hou, Christopher De Sa

Abstract

Post-training quantization (PTQ) reduces the memory footprint of LLMs by quantizing weights to low-precision datatypes.Since LLM inference is usually memory-bound, PTQ methods can improve inference throughput.Recent state-of-the-art PTQ approaches use vector quantization (VQ) to quantize multiple weights at once, which improves information utilization through better shaping.However, VQ requires a codebook with size exponential in the dimension.This limits current VQ-based PTQ works to low VQ dimensions ($\le 8$) that in turn limit quantization quality.Here, we introduce QTIP, which instead uses trellis coded quantization (TCQ) to achieve ultra-high-dimensional quantization. TCQ uses a stateful decoder that separates the codebook size from the bitrate and effective dimension. QTIP introduces a spectrum of lookup-only to computed lookup-free trellis codes designed for a hardware-efficient "bitshift" trellis structure; these codes achieve state-of-the-art results in both quantization quality and inference speed.