ReMI: A Dataset for Reasoning with Multiple Images

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Datasets and Benchmarks Track

Bibtex Paper Supplemental

Authors

Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Dee Guo, Sreenivas Gollapudi, Ahmed Qureshi

Abstract

With the continuous advancement of large language models (LLMs), it is essential to create new benchmarks to evaluate their expanding capabilities and identify areas for improvement. This work focuses on multi-image reasoning, an emerging capability in state-of-the-art LLMs. We introduce ReMI, a dataset designed to assess LLMs' ability to reason with multiple images. This dataset encompasses a diverse range of tasks, spanning various reasoning domains such as math, physics, logic, code, table/chart understanding, and spatial and temporal reasoning. It also covers a broad spectrum of characteristics found in multi-image reasoning scenarios. We have benchmarked several cutting-edge LLMs using ReMI and found a substantial gap between their performance and human-level proficiency. This highlights the challenges in multi-image reasoning and the need for further research. Our analysis also reveals the strengths and weaknesses of different models, shedding light on the types of reasoning that are currently attainable and areas where future models require improvement. We anticipate that ReMI will be a valuable resource for developing and evaluating more sophisticated LLMs capable of handling real-world multi-image understanding tasks.