Dual Risk Minimization: Towards Next-Level Robustness in Fine-tuning Zero-Shot Models

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Kaican Li, Weiyan Xie, Yongxiang Huang, Didan Deng, Lanqing Hong, Zhenguo Li, Ricardo Silva, Nevin L. Zhang

Abstract

Fine-tuning foundation models often compromises their robustness to distribution shifts. To remedy this, most robust fine-tuning methods aim to preserve the pre-trained features. However, not all pre-trained features are robust and those methods are largely indifferent to which ones to preserve. We propose dual risk minimization (DRM), which combines empirical risk minimization with worst-case risk minimization, to better preserve the core features of downstream tasks. In particular, we utilize core-feature descriptions generated by LLMs to induce core-based zero-shot predictions which then serve as proxies to estimate the worst-case risk. DRM balances two crucial aspects of model robustness: expected performance and worst-case performance, establishing a new state of the art on various real-world benchmarks. DRM significantly improves the out-of-distribution performance of CLIP ViT-L/14@336 on ImageNet (75.9$\to$77.1), WILDS-iWildCam (47.1$\to$51.8), and WILDS-FMoW (50.7$\to$53.1); opening up new avenues for robust fine-tuning. Our code is available at https://github.com/vaynexie/DRM.