RouterDC: Query-Based Router by Dual Contrastive Learning for Assembling Large Language Models

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Shuhao Chen, Weisen Jiang, Baijiong Lin, James T. Kwok, Yu Zhang

Abstract

Recent works show that assembling multiple off-the-shelf large language models (LLMs) can harness their complementary abilities. To achieve this, routing is a promising method, which learns a router to select the most suitable LLM for each query. However, existing routing models are ineffective when multiple LLMs perform well for a query. To address this problem, in this paper, we propose a method called query-based Router by Dual Contrastive learning (RouterDC). The RouterDC model, which consists of an encoder and LLM embeddings, is trained by two proposed contrastive losses (sample-LLM and sample-sample losses). Experimental results show that RouterDC is effective in assembling LLMs and largely outperforms individual top-performing LLMs as well as existing routing methods on both in-distribution (+2.76\%) and out-of-distribution (+1.90\%) tasks. The source code is available at https://github.com/shuhao02/RouterDC.