Performative Control for Linear Dynamical Systems

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Songfu Cai, Fei Han, Xuanyu Cao

Abstract

We introduce the framework of performative control, where the policy chosen by the controller affects the underlying dynamics of the control system. This results in a sequence of policy-dependent system state data with policy-dependent temporal correlations. Following the recent literature on performative prediction \cite{perdomo2020performative}, we introduce the concept of a performatively stable control (PSC) solution. We first propose a sufficient condition for the performative control problem to admit a unique PSC solution with a problem-specific structure of distributional sensitivity propagation and aggregation. We further analyze the impacts of system stability on the existence of the PSC solution. Specifically, for {almost surely strongly stable} policy-dependent dynamics, the PSC solution exists if the sum of the distributional sensitivities is small enough. However, for almost surely unstable policy-dependent dynamics, the existence of the PSC solution will necessitate a temporally backward decaying of the distributional sensitivities. We finally provide a repeated stochastic gradient descent scheme that converges to the PSC solution and analyze its non-asymptotic convergence rate. Numerical results validate our theoretical analysis.