Enriching Disentanglement: From Logical Definitions to Quantitative Metrics

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Yivan Zhang, Masashi Sugiyama

Abstract

Disentangling the explanatory factors in complex data is a promising approach for generalizable and data-efficient representation learning. While a variety of quantitative metrics for learning and evaluating disentangled representations have been proposed, it remains unclear what properties these metrics truly quantify. In this work, we establish algebraic relationships between logical definitions and quantitative metrics to derive theoretically grounded disentanglement metrics. Concretely, we introduce a compositional approach for converting a higher-order predicate into a real-valued quantity by replacing (i) equality with a strict premetric, (ii) the Heyting algebra of binary truth values with a quantale of continuous values, and (iii) quantifiers with aggregators. The metrics induced by logical definitions have strong theoretical guarantees, and some of them are easily differentiable and can be used as learning objectives directly. Finally, we empirically demonstrate the effectiveness of the proposed metrics by isolating different aspects of disentangled representations.