Many-Shot In-Context Learning

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, Hugo Larochelle

Abstract

Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, without any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples – the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated outputs. To mitigate this limitation, we explore two new settings: (1) "Reinforced ICL" that uses model-generated chain-of-thought rationales in place of human rationales, and (2) "Unsupervised ICL" where we remove rationales from the prompt altogether, and prompts the model only with domain-specific inputs. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. We demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to supervised fine-tuning. Finally, we reveal the limitations of next-token prediction loss as an indicator of downstream ICL performance.