Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Justin Dumouchelle, Esther Julien, Jannis Kurtz, Elias Khalil
Bilevel optimization deals with nested problems in which leader takes the first decision to minimize their objective function while accounting for a follower's best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness. While exact solvers have been proposed for mixed-integer linear bilevel optimization, they tend to scale poorly with problem size and are hard to generalize to the non-linear case. On the other hand, problem-specific algorithms (exact and heuristic) are limited in scope. Under a data-driven setting in which similar instances of a bilevel problem are solved routinely, our proposed framework, Neur2BiLO, embeds a neural network approximation of the leader's or follower's value function, trained via supervised regression, into an easy-to-solve mixed-integer program. Neur2BiLO serves as a heuristic that produces high-quality solutions extremely fast for four applications with linear and non-linear objectives and pure and mixed-integer variables.