A Near-optimal Algorithm for Learning Margin Halfspaces with Massart Noise

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Ilias Diakonikolas, Nikos Zarifis

Abstract

We study the problem of PAC learning $\gamma$-margin halfspaces in the presence of Massart noise. Without computational considerations, the sample complexity of this learning problem is known to be $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. Prior computationally efficient algorithms for the problem incur sample complexity $\tilde{O}(1/(\gamma^4 \epsilon^3))$ and achieve 0-1 error of $\eta+\epsilon$, where $\eta<1/2$ is the upper bound on the noise rate.Recent work gave evidence of an information-computation tradeoff, suggesting that a quadratic dependence on $1/\epsilon$ is required for computationally efficient algorithms. Our main result is a computationally efficient learner with sample complexity $\widetilde{\Theta}(1/(\gamma^2 \epsilon^2))$, nearly matching this lower bound. In addition, our algorithm is simple and practical, relying on online SGD on a carefully selected sequence of convex losses.