Multidimensional Fractional Programming for Normalized Cuts

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Yannan Chen, Beichen Huang, Licheng Zhao, Kaiming Shen

Abstract

The Normalized cut (NCut) problem is a fundamental and yet notoriously difficult one in the unsupervised clustering field. Because the NCut problem is fractionally structured, the fractional programming (FP) based approach has worked its way into a new frontier. However, the conventional FP techniques are insufficient: the classic Dinkelbach's transform can only deal with a single ratio and hence is limited to the two-class clustering, while the state-of-the-art quadratic transform accounts for multiple ratios but fails to convert the NCut problem to a tractable form. This work advocates a novel extension of the quadratic transform to the multidimensional ratio case, thereby recasting the fractional 0-1 NCut problem into a bipartite matching problem---which can be readily solved in an iterative manner. Furthermore, we explore the connection between the proposed multidimensional FP method and the minorization-maximization theory to verify the convergence.