Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Datasets and Benchmarks Track

Bibtex Paper

Authors

Xingming Long, Jie Zhang, Shiguang Shan, Xilin Chen

Abstract

Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data. However, some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox. In this paper, we construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue, in which we divide the test samples into subsets with different semantic and covariate shift degrees relative to the ID dataset. The data division is achieved through a shift measuring method based on our proposed Language Aligned Image feature Decomposition (LAID). Moreover, we construct a Synthetic Incremental Shift (Syn-IS) dataset that contains high-quality generated images with more diverse covariate contents to complement the IS-OOD benchmark. We evaluate current OOD detection methods on our benchmark and find several important insights: (1) The performance of most OOD detection methods significantly improves as the semantic shift increases; (2) Some methods like GradNorm may have different OOD detection mechanisms as they rely less on semantic shifts to make decisions; (3) Excessive covariate shifts in the image are also likely to be considered as OOD for some methods. Our code and data are released in https://github.com/qqwsad5/IS-OOD.