Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Tehila Dahan, Kfir Y. Levy
We consider distributed learning scenarios where $M$ machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.