Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth
We study the geometry of conditional optimal transport (COT) and prove a dynamic formulation which generalizes the Benamou-Brenier Theorem. Equipped with these tools, we propose a simulation-free flow-based method for conditional generative modeling. Our method couples an arbitrary source distribution to a specified target distribution through a triangular COT plan, and a conditional generative model is obtained by approximating the geodesic path of measures induced by this COT plan. Our theory and methods are applicable in infinite-dimensional settings, making them well suited for a wide class of Bayesian inverse problems. Empirically, we demonstrate that our method is competitive on several challenging conditional generation tasks, including an infinite-dimensional inverse problem.