Fair Kernel K-Means: from Single Kernel to Multiple Kernel

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Peng Zhou, Rongwen Li, Liang Du

Abstract

Kernel k-means has been widely studied in machine learning. However, existing kernel k-means methods often ignore the \textit{fairness} issue, which may cause discrimination. To address this issue, in this paper, we propose a novel Fair Kernel K-Means (FKKM) framework. In this framework, we first propose a new fairness regularization term that can lead to a fair partition of data. The carefully designed fairness regularization term has a similar form to the kernel k-means which can be seamlessly integrated into the kernel k-means framework. Then, we extend this method to the multiple kernel setting, leading to a Fair Multiple Kernel K-Means (FMKKM) method. We also provide some theoretical analysis of the generalization error bound, and based on this bound we give a strategy to set the hyper-parameter, which makes the proposed methods easy to use. At last, we conduct extensive experiments on both the single kernel and multiple kernel settings to compare the proposed methods with state-of-the-art methods to demonstrate their effectiveness.