CODA: A Correlation-Oriented Disentanglement and Augmentation Modeling Scheme for Better Resisting Subpopulation Shifts

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Ziquan OU, Zijun Zhang

Abstract

Data-driven models learned often struggle to generalize due to widespread subpopulation shifts, especially the presence of both spurious correlations and group imbalance (SC-GI). To learn models more powerful for defending against SC-GI, we propose a {\bf Correlation-Oriented Disentanglement and Augmentation (CODA)} modeling scheme, which includes two unique developments: (1) correlation-oriented disentanglement and (2) strategic sample augmentation with reweighted consistency (RWC) loss. In (1), a bi-branch encoding process is developed to enable the disentangling of variant and invariant correlations by coordinating with a decoy classifier and the decoder reconstruction. In (2), a strategic sample augmentation based on disentangled latent features with RWC loss is designed to reinforce the training of a more generalizable model. The effectiveness of CODA is verified by benchmarking against a set of SOTA models in terms of worst-group accuracy and maximum group accuracy gap based on two famous datasets, ColoredMNIST and CelebA.