Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Tekin, Ling Liu
Recent studies show that Large Language Models (LLMs) with safety alignment can be jail-broken by fine-tuning on a dataset mixed with harmful data. For the first time in the literature, we show that the jail-break effect can be mitigated by separating two states in the fine-tuning stage to respectively optimize over the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the \textit{excess drift} towards the switching iterates of the two states could be a probable reason for the instability. To remedy this issue, we propose \textbf{L}azy(\textbf{i}) \textbf{s}afety \textbf{a}lignment (\textbf{Lisa}), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa's convergence. Empirically, our results on four downstream fine-tuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM's accuracy on the user tasks. Code is available at https://github.com/git-disl/Lisa.