NetworkGym: Reinforcement Learning Environments for Multi-Access Traffic Management in Network Simulation

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Datasets and Benchmarks Track

Bibtex Paper Supplemental

Authors

Momin Haider, Ming Yin, Menglei Zhang, Arpit Gupta, Jing Zhu, Yu-Xiang Wang

Abstract

Mobile devices such as smartphones, laptops, and tablets can often connect to multiple access networks (e.g., Wi-Fi, LTE, and 5G) simultaneously.Recent advancements facilitate seamless integration of these connections below the transport layer, enhancing the experience for apps that lack inherent multi-path support.This optimization hinges on dynamically determining the traffic distribution across networks for each device, a process referred to as multi-access traffic splitting.This paper introduces NetworkGym, a high-fidelity network environment simulator that facilitates generating multiple network traffic flows and multi-access traffic splitting.This simulator facilitates training and evaluating different RL-based solutions for the multi-access traffic splitting problem.Our initial explorations demonstrate that the majority of existing state-of-the-art offline RL algorithms (e.g. CQL) fail to outperform certain hand-crafted heuristic policies on average.This illustrates the urgent need to evaluate offline RL algorithms against a broader range of benchmarks, rather than relying solely on popular ones such as D4RL.We also propose an extension to the TD3+BC algorithm, named Pessimistic TD3 (PTD3), and demonstrate that it outperforms many state-of-the-art offline RL algorithms.PTD3's behavioral constraint mechanism, which relies on value-function pessimism, is theoretically motivated and relatively simple to implement.We open source our code and offline datasets at github.com/hmomin/networkgym.