Pessimistic Backward Policy for GFlowNets

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, Sungsoo Ahn

Abstract

This paper studies Generative Flow Networks (GFlowNets), which learn to sample objects proportionally to a given reward function through the trajectory of state transitions. In this work, we observe that GFlowNets tend to under-exploit the high-reward objects due to training on insufficient number of trajectories, which may lead to a large gap between the estimated flow and the (known) reward value. In response to this challenge, we propose a pessimistic backward policy for GFlowNets (PBP-GFN), which maximizes the observed flow to align closely with the true reward for the object. We extensively evaluate PBP-GFN across eight benchmarks, including hyper-grid environment, bag generation, structured set generation, molecular generation, and four RNA sequence generation tasks. In particular, PBP-GFN enhances the discovery of high-reward objects, maintains the diversity of the objects, and consistently outperforms existing methods.