Approximating the Top Eigenvector in Random Order Streams

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Praneeth Kacham, David Woodruff

Abstract

When rows of an $n \times d$ matrix $A$ are given in a stream, we study algorithms for approximating the top eigenvector of $A^T A$ (equivalently, the top right singular vector of $A$). We consider worst case inputs $A$ but assume that the rows are presented to the streaming algorithm in a uniformly random order. We show that when the gap parameter $R = \sigma_1(A)^2/\sigma_2(A)^2 = \Omega(1)$, then there is a randomized algorithm that uses $O(h \cdot d \cdot \text{polylog}(d))$ bits of space and outputs a unit vector $v$ that has a correlation $1 - O(1/\sqrt{R})$ with the top eigenvector $v_1$. Here $h$ denotes the number of ``heavy rows'' in the matrix, defined as the rows with Euclidean norm at least $\|{A}\|_F/\sqrt{d \cdot \text{polylog}(d)}$. We also provide a lower bound showing that any algorithm using $O(hd/R)$ bits of space can obtain at most $1 - \Omega(1/R^2)$ correlation with the top eigenvector. Thus, parameterizing the space complexity in terms of the number of heavy rows is necessary for high accuracy solutions.Our results improve upon the $R = \Omega(\log n \cdot \log d)$ requirement in a recent work of Price. We note that Price's algorithm works for arbitrary order streams whereas our algorithm requires a stronger assumption that the rows are presented in a uniformly random order. We additionally show that the gap requirements in Price's analysis can be brought down to $R = \Omega(\log^2 d)$ for arbitrary order streams and $R = \Omega(\log d)$ for random order streams. The requirement of $R = \Omega(\log d)$ for random order streams is nearly tight for Price's analysis as we obtain a simple instance with $R = \Omega(\log d/\log\log d)$ for which Price's algorithm, with any fixed learning rate, cannot output a vector approximating the top eigenvector $v_1$.