Diffusion Tuning: Transferring Diffusion Models via Chain of Forgetting

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Jincheng Zhong, Xingzhuo Guo, Jiaxiang Dong, Mingsheng Long

Abstract

Diffusion models have significantly advanced the field of generative modeling. However, training a diffusion model is computationally expensive, creating a pressing need to adapt off-the-shelf diffusion models for downstream generation tasks. Current fine-tuning methods focus on parameter-efficient transfer learning but overlook the fundamental transfer characteristics of diffusion models. In this paper, we investigate the transferability of diffusion models and observe a monotonous chain of forgetting trend of transferability along the reverse process. Based on this observation and novel theoretical insights, we present Diff-Tuning, a frustratingly simple transfer approach that leverages the chain of forgetting tendency. Diff-Tuning encourages the fine-tuned model to retain the pre-trained knowledge at the end of the denoising chain close to the generated data while discarding the other noise side. We conduct comprehensive experiments to evaluate Diff-Tuning, including the transfer of pre-trained Diffusion Transformer models to eight downstream generations and the adaptation of Stable Diffusion to five control conditions with ControlNet. Diff-Tuning achieves a 24.6% improvement over standard fine-tuning and enhances the convergence speed of ControlNet by 24%. Notably, parameter-efficient transfer learning techniques for diffusion models can also benefit from Diff-Tuning. Code is available at this repository: https://github.com/thuml/Diffusion-Tuning.