Decomposed Prompt Decision Transformer for Efficient Unseen Task Generalization

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Hongling Zheng, Li Shen, Yong Luo, Tongliang Liu, Jialie Shen, Dacheng Tao

Abstract

Multi-task offline reinforcement learning aims to develop a unified policy for diverse tasks without requiring real-time interaction with the environment. Recent work explores sequence modeling, leveraging the scalability of the transformer architecture as a foundation for multi-task learning. Given the variations in task content and complexity, formulating policies becomes a challenging endeavor, requiring careful parameter sharing and adept management of conflicting gradients to extract rich cross-task knowledge from multiple tasks and transfer it to unseen tasks. In this paper, we propose the Decomposed Prompt Decision Transformer (DPDT) that adopts a two-stage paradigm to efficiently learn prompts for unseen tasks in a parameter-efficient manner. We incorporate parameters from pre-trained language models (PLMs) to initialize DPDT, thereby providing rich prior knowledge encoded in language models. During the decomposed prompt tuning phase, we learn both cross-task and task-specific prompts on training tasks to achieve prompt decomposition. In the test time adaptation phase, the cross-task prompt, serving as a good initialization, were further optimized on unseen tasks through test time adaptation, enhancing the model's performance on these tasks. Empirical evaluation on a series of Meta-RL benchmarks demonstrates the superiority of our approach. The project is available at https://github.com/ruthless-man/DPDT.