Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Ho Man Kwan, Ge Gao, Fan Zhang, Andrew Gower, David Bull
Recent advances in implicit neural representation (INR)-based video coding havedemonstrated its potential to compete with both conventional and other learning-based approaches. With INR methods, a neural network is trained to overfit avideo sequence, with its parameters compressed to obtain a compact representationof the video content. However, although promising results have been achieved,the best INR-based methods are still out-performed by the latest standard codecs,such as VVC VTM, partially due to the simple model compression techniquesemployed. In this paper, rather than focusing on representation architectures, whichis a common focus in many existing works, we propose a novel INR-based videocompression framework, Neural Video Representation Compression (NVRC),targeting compression of the representation. Based on its novel quantization andentropy coding approaches, NVRC is the first framework capable of optimizing anINR-based video representation in a fully end-to-end manner for the rate-distortiontrade-off. To further minimize the additional bitrate overhead introduced by theentropy models, NVRC also compresses all the network, quantization and entropymodel parameters hierarchically. Our experiments show that NVRC outperformsmany conventional and learning-based benchmark codecs, with a 23% averagecoding gain over VVC VTM (Random Access) on the UVG dataset, measuredin PSNR. As far as we are aware, this is the first time an INR-based video codecachieving such performance.